In this paper, we explore nature writing as a specific contemporary genre and contextualise the writing of the Scottish author Kathleen Jamie within the larger framework of the genre. Jamie embraces her “northernness” and “marginalness” (Dósa 2009) by focusing on the realm of non-human on the fringes of Europe, thus re-learning to see the world and constituting a new ‘poetics of noticing’. The aim of the study is to extract a cluster of linguistic and literary features from selected essays (Findings (2005) and Sightlines (2012)) by Kathleen Jamie to represent ‘salience’ and ‘conviction’ (Stibbe 2015) within the theoretical frameworks of ecolingustics and ecosophy. In search of new stories to live and die by, nature writing, therefore, is proposed to function as an important medium in constructing salience, beliefs and convictions about how humans perceive their (dis)place(ment) in nature as well as their inner and outer landscape. / Keywords: nature writing, Kathleen Jamie, poetics of noticing, salience, conviction, ecolinguistics, ecosophy
Due to the frequent climatic changes occurring worldwide, which are related to extreme meteorological parameters as well as human activities, it is obvious that these influence the flow regimes of rivers. River flow is the most important factor determining the hydrological regime of any river. This has a substantial influence on the water resources and the environment surrounding the river. Hydrotechnical structures are also dimensioned on the basis of the flow as the primary input parameter. The flow conditions have different properties and correlations with the material of the river bed. In this paper, possible dependencies and phenomena are investigated using real case studies on two rivers in Croatia - examples of river courses in alluvium and karst areas - with regard to homogeneity and isotropy analyses. For this purpose, rescaled adjusted partial sums and innovative polygon trend analysis methods will be applied on the form of a combination of methods at the same watercourses. It has been shown that the analysed time series of the flows do not exhibit homogeneity and isotropy. In addition, fluctuations and irregularities were detected in the same time series. This is key information for determining the reliability of the flow forecast.
Although the importance of the microbiome in the context of tick biology and vector competence has recently come into a broader research focus, the field is still in its infancy and the complex ecological interactions between the tick residential bacteria and pathogens are obscure. Here, we show that an environmentally acquired gut bacterium has the potential to impair Borrelia afzelii colonization within the tick vector through a secreted metalloprotease. Oral introduction of either Bacillus cereus LTG-1 isolate or its purified enhancin (BcEnhancin) protein significantly reduces B. afzelii burden in the guts of Ixodes ricinus ticks. This effect is attributed to the ability of BcEnhancin to degrade a glycan-rich peritrophic matrix (PM), which is a gut protective barrier essential for Borrelia survival. Our study highlights the importance of the gut microbiome in determining tick vector competence and provides a deeper mechanistic insight into the complex network of interactions between Borrelia, the tick, and the tick microbiome.
We investigate models that can induce significant modifications to the couplings of first- and second-generation quarks with Higgs bosons. Specifically, we identify all simplified models featuring two vector-like quark states which can lead to substantial enhancements in these couplings. In addition, these models generate operators in Standard Model Effective Field Theory, both at tree-level and one-loop, that are constrained by electroweak precision and Higgs data. We show how to evade constraints from flavour physics and consider direct searches for vector-like quarks. Ultimately, we demonstrate that viable ultraviolet models can be found with first-generation quark Yukawa couplings enhanced by several hundred times their Standard Model value, while the Higgs couplings to charm (strange) quarks can be increased by factors of a few (few tens). Given the importance of electroweak precision data in constraining these models, we also discuss projections for future measurements at the Tera-$Z$ FCC-ee machine.
OBJECTIVE Pathological studies suggest that multiple sclerosis (MS) lesions endure multiple waves of damage and repair; however, the dynamics and characteristics of these processes are poorly understood in patients living with MS. METHODS We studied 128 MS patients (75 relapsing-remitting, 53 progressive) and 72 healthy controls who underwent advanced magnetic resonance imaging and clinical examination at baseline and 2 years later. Magnetization transfer saturation and multi-shell diffusion imaging were used to quantify longitudinal changes in myelin and axon volumes within MS lesions. Lesions were grouped into 4 classes (repair, damage, mixed repair damage, and stable). The frequency of each class was correlated to clinical measures, demographic characteristics, and levels of serum neurofilament light chain (sNfL). RESULTS Stable lesions were the most frequent (n = 2,276; 44%), followed by lesions with patterns of "repair" (n = 1,352; 26.2%) and damage (n = 1,214; 23.5%). The frequency of "repair" lesion was negatively associated with disability (β = -0.04; p < 0.001) and sNfL (β = -0.16; p < 0.001) at follow-up. The frequency of the "damage" class was higher in progressive than relapsing-remitting patients (p < 0.05) and was related to disability (baseline: β = -0.078; follow-up: β = -0.076; p < 0.001) and age (baseline: β = -0.078; p < 0.001). Stable lesions were more frequent in relapsing-remitting than in progressive patients (p < 0.05), and in younger patients versus older (β = -0.07; p < 0.001) at baseline. Further, "mixed" lesions were most frequent in older patients (β = 0.004; p < 0.001) at baseline. INTERPRETATION These findings show that repair and damage processes within MS lesions occur across the entire disease spectrum and that their frequency correlates with patients disability, age, disease duration, and extent of neuroaxonal damage. ANN NEUROL 2024.
PURPOSE Glioma is a rare and debilitating brain cancer with one of the lowest cancer survival rates. Genome-wide association studies have identified 34 genetic susceptibility regions. We sought to discover novel susceptibility regions using approaches which test groups of contiguous genetic markers simultaneously. PATIENTS AND METHODS We analyzed data from three independent glioma studies of European ancestry, GliomaScan (1,316 cases/1,293 controls), AGOG (560 cases/2,237 controls), and GICC (4,000 cases/2,411 controls), using the machine-learning algorithm DEPTH and a region-based regression method based on the generalized Berk-Jones (GBJ) statistic, to assess the association of glioma with genomic regions by glioma type and sex. Summary statistics from the UCSF/Mayo Clinic study were used for independent validation. We conducted a meta-analysis using GliomaScan, AGOG, GICC and UCSF/Mayo. RESULTS We identified 11 novel candidate genomic regions for glioma risk common to multiple studies. Two of the 11 regions, 16p13.3 containing RBFOX1 and 1p36.21 containing PRDM2, were significantly associated with female and male glioma risk respectively, based on results of the meta-analysis. Both regions have been previously linked to glioma tumor progression. Three of the 11 regions contain neurotransmitter receptor genes (7q31.33 GRM8, 5q35.2 DRD1, 15q13.3 CHRNA7). CONCLUSIONS Our region-based approach identified 11 genomic regions that suggest association with glioma risk of which two regions, 16p13.3 and 1p36.21, warrant further investigation as genetic susceptibility regions for female and male risk respectively. Our analyses suggest that genetic susceptibility to glioma may differ by sex and highlights the possibility that synapse-related genes play a role in glioma susceptibility.
In 2004, the Commission for the Preservation of National Monuments declared the "Architectural Complex of Husejnija (Husein-kapetan Gradaščević) Mosque in Gradačac" a national monument of Bosnia and Herzegovina. The mosque belongs to the type of central domed mosque with a portico covered by three small domes. In September/October 2023, cracks were observed on six arches, the capitals of two columns, and the base of one column in the portico of the mosque. Geotechnical investigative works included the creation of three excavations and two boreholes with continuous Standard Penetration Tests (SPT). The excavations reveal layers below the ground level, consisting of a well-bound sandy artificial fill from the ground surface to a depth of 1.35 meters, a layer of poorly bound artificial stony material from 1.35 to 2.45 meters, and a layer of natural clay at greater depths. It is assumed that over time, due to water seepage from the hillside and rainfall runoff from the mosque, there has been a change in the physical-mechanical properties of the foundation soil and partial settling of the portico structure. In addition to the existing channel on two sides of the mosque, a drainage ring around the building and a drainage curtain on the uphill slope have been designed. Also, underpinning of the portico foundations in alternating segments has been designed to strengthen the stone masonry layer and prevent further settling and development of cracks in the portico elements. After the works are completed, a 12-month monitoring period is planned, followed by an analysis and repair of the cracks.
OBJECTIVES Childhood-onset systemic lupus erythematosus (cSLE), representing 15%-20% of individuals with SLE, has been difficult to study globally due to differences between registries. This initiative, supported by Childhood Arthritis Rheumatology Research Alliance (CARRA) and Paediatric Rheumatology European Society (PReS), aims to create Core and Expanded cSLE Datasets to standardise and enhance research worldwide. METHODS 21 international cSLE experts and 4 patients participated in a Delphi process (questionnaires, 2 topic-specific focus groups and 3 virtual consensus meetings) to create 2 standardised cSLE datasets. The Core cSLE Dataset was designed to include data essential to meaningful clinical research across many settings. The Expanded cSLE Dataset was designed for centres able to consistently collect data to address broader research questions. Final data items for the Core and Expanded datasets were determined by consensus defined as >80% agreement) using an adapted nominal group technique and voting. RESULTS The resulting Core cSLE Dataset contains 46 items, including demographics, clinical features, laboratory results, medications and significant adverse events. The Expanded cSLE Dataset adds 26 additional items and includes patient-reported outcomes. Consensus was also achieved regarding the frequency and time points for data collection: baseline, quarterly follow-up visits, annually and flare visits. CONCLUSION Standardised Core and Expanded cSLE Datasets for registry-based international cSLE research were defined through the consensus of global experts and patient/caregiver representatives, endorsed by CARRA and PReS. These datasets incorporate disease-specific and patient-specific features, optimised for diverse settings to facilitate international collaborative research for children and adolescents with SLE worldwide.
Connected and Automated Vehicles (CAVs) are revolutionizing the automotive industry by improving real-time situational awareness, and road safety. Connectivity and latency are critical for the secure and efficient operation of CAVs. The evolution of Cellular Vehicular-to-Everything (C-V2X) technology, particularly through Long Term Evolution V2X (LTE-V2X) and its successor New Radio-V2X (NR-V2X), is essential to address these challenges. LTE-V2X and NR-V2X are intended to coexist, complementing each other to cover a broad spectrum of vehicular communication needs. However, network overload is a critical issue, which risks severely degrading the performance of V2X applications and compromising road safety. This study delves into the practical implementation of Network Slicing within a real-world 5G environment, incorporating a modular Open Radio Access Network (O-RAN) architecture on the radio side, and Service-Based Architecture (SBA) principles on the core. We present a Network Slicing configuration that deploys a synergy between the 5G Core (5GC) and the Radio Access Network (RAN). Through strategic placement and policy application across multiple User Plane Functions (UPFs), our configuration enhances network performance and reliability for V2X applications. We validate our approach by demonstrating how this setup effectively manages the high demands of diverse and rigorous applications, ensuring the network requirements for enhanced V2X scenarios under various network conditions. Our results highlight the importance of synergy between 5GC and RAN for the application of an efficient network slicing mechanism in NR-V2X networks.
Enhancing communication between Vulnerable Road Users (VRUs) and Unmanned Automated Vehicles (UAVs) has significant potential to improve road safety. The need for this communication is due to the fact that VRUs will no longer be able to establish physical eye contact with UAVs, given the absence of a human driver behind the steering wheel. However, a challenge in the state-of-the-art technologies for Connected, Cooperative, and Automated Mobility (CCAM), i.e. ITS-G5 (IEEE 802.11p) and Cellular Vehicle-to-Everything (C-V2X), is the lack of a unified communication stack that connects all types of users. This is because the current generation of CCAM communication technologies requires dedicated hardware devices that cannot be easily installed on devices carried by VRUs (such as phones or wearables). This paper aims to address this challenge by providing a real-life, sophisticated solution that offers the CCAM communication stack as a Network-as-a-Service (NaaS) in the 5G and Beyond ecosystem. Integration is achieved by relying on the Service Enabler Architecture Layer (SEAL) principles standardised by the 3rd Generation Partnership Project (3GPP). These architectural principles are embedded in the design of Network-Aware Edge Applications (EdgeApps), which are the building blocks of vertical services in 5G and Beyond. This way, any device or user with the capability to connect to 5G will also be able to retrieve important CCAM services from the network by using EdgeApps. In addition, no dedicated CCAM hardware is needed. Furthermore, this paper provides key lessons learned from the challenges encountered in connecting VRUs and UAVs by integrating CCAM into the 5G and Beyond ecosystem. Moreover, we have conducted real-life experiments to evaluate the system-level latency characteristics of the proposed solution and compared them with those of ITS-G5 and C-V2X.
Nema pronađenih rezultata, molimo da izmjenite uslove pretrage i pokušate ponovo!
Ova stranica koristi kolačiće da bi vam pružila najbolje iskustvo
Saznaj više