Logo
User Name

Suada Sulejmanovic

Associate Professor, University of Sarajevo

Društvene mreže:

Polje Istraživanja: Civil Engineering

Institucija

University of Sarajevo
Associate Professor
A. Šarić, Suada Sulejmanović, Sanjin Albinović, M. Pozder, Žanesa Ljevo

Air pollution represents one of the most complex problems of humanity. Traffic contributes significantly to this by emitting large amounts of harmful gases. This problem is particularly pronounced at urban intersections due to frequent changes in vehicle movement dynamics. This paper primarily presents the influence of intersection geometry on pollutant emissions levels. In addition, the influence of various traffic policies promoting greater use of public transport and zero-emission vehicles is also examined. The research combines the field part of recording existing intersections in Sarajevo, Bosnia and Herzegovina with traffic microsimulation. Detailed data on vehicles’ movements were obtained by advanced video processing using the DataFromSky tool, while the PTV Vissim 2022 and Bosch ESTM (2022) software were used to simulate traffic and estimate emissions at geometrically different intersections. The results showed that, in saturated traffic conditions, signalized intersections cause up to 50% lower emissions compared with two-lane and turbo roundabouts and that the impact of the geometric change is more significant than the impact of zero-emission vehicles. In unsaturated conditions, the differences in emissions at different intersections are negligible, with the highest reductions in pollution achieved by using zero-emission vehicles.

Suada Sulejmanović, Žanesa Ljevo, M. Pozder, A. Šarić, Sanjin Albinović

increasingly common occurrence of rain with a significant amount of precipitation in one hour, which causes floods. Floods cause great material and intangible damage per population and often endanger human lives. The road network in such situations has crucial importance to take urgent intervention measures and rescue people, animals and material goods. This paper is focused on the natural flood disaster and its influence on road infrastructure and presents the risk assessment methodology and determines critical road sections of main roads in the Federation of Bosnia and Herzegovina, analyzing data on 100-year floods.

E. Hadžič, G. Aronica, Hata Milišić, Suvada Šuvalija, Slobodanka Ključanin, Ammar Šarić, Suada Sulejmanović, Fehad Mujić

. Floods represent extreme hydrological phenomena that affect populations, environment, social, political, and ecological systems. After the catastrophic floods that have hit Europe and the World in recent decades, the flood problem has become more current. At the EU level, a legal framework has been put in place with the entry into force of Directive 2007/60/EC on Flood Risk Assessment and Management (Flood Directive). Two years after the entry into force of the Floods Directive, Bosnia and Herzegovina (B&H), has adopted a Regulation on the types and content of water protection plans, which takes key steps and activities under the Floods Directive. The “Methodology for developing flood hazard and risk maps” (Methodology) was developed for the territory of Bosnia and Herzegovina, following the methodology used in the majority of EU member states, but with certain modifications to the country’s characteristics. Accordingly, activities for the preparation of the Preliminary Flood Risk Assessment for each river basin district were completed in 2015 for the territory of Bosnia and Herzegovina. Activities on the production of hazard maps and flood risk maps are in progress. The results of probable climate change impact model forecasts should be included in the preparation of the Flood Risk Management Plans, which is the subsequent phase of implementing the Flood Directive. By the foregoing, the paper will give an example of the development of the hydrodynamic model of the Zujevina River, as well as the development of hazard and risk maps. Hazard and risk maps have been prepared for medium probability floods of 1/100 as well as for high probability floods of 1/20. The results of LiDAR (Light Detection and Ranging) recording were used to create a digital terrain model (DMR). It was noticed that there are big differences between the flood maps obtained by recording LiDAR techniques in relation to the previous flood maps obtained using georeferenced topographic maps. Particular attention is given to explaining the Methodology applied in Bosnia and Herzegovina.

...
...
...

Pretplatite se na novosti o BH Akademskom Imeniku

Ova stranica koristi kolačiće da bi vam pružila najbolje iskustvo

Saznaj više