Importance Rapid digitalization of health care and a dearth of digital health education for medical students and junior physicians worldwide means there is an imperative for more training in this dynamic and evolving field. Objective To develop an evidence-informed, consensus-guided, adaptable digital health competencies framework for the design and development of digital health curricula in medical institutions globally. Evidence Review A core group was assembled to oversee the development of the Digital Health Competencies in Medical Education (DECODE) framework. First, an initial list was created based on findings from a scoping review and expert consultations. A multidisciplinary and geographically diverse panel of 211 experts from 79 countries and territories was convened for a 2-round, modified Delphi survey conducted between December 2022 and July 2023, with an a priori consensus level of 70%. The framework structure, wordings, and learning outcomes with marginal percentage of agreement were discussed and determined in a consensus meeting organized on September 8, 2023, and subsequent postmeeting qualitative feedback. In total, 211 experts participated in round 1, 149 participated in round 2, 12 participated in the consensus meeting, and 58 participated in postmeeting feedback. Findings The DECODE framework uses 3 main terminologies: domain, competency, and learning outcome. Competencies were grouped into 4 domains: professionalism in digital health, patient and population digital health, health information systems, and health data science. Each competency is accompanied by a set of learning outcomes that are either mandatory or discretionary. The final framework comprises 4 domains, 19 competencies, and 33 mandatory and 145 discretionary learning outcomes, with descriptions for each domain and competency. Six highlighted areas of considerations for medical educators are the variations in nomenclature, the distinctiveness of digital health, the concept of digital health literacy, curriculum space and implementation, the inclusion of discretionary learning outcomes, and socioeconomic inequities in digital health education. Conclusions and Relevance This evidence-informed and consensus-guided framework will play an important role in enabling medical institutions to better prepare future physicians for the ongoing digital transformation in health care. Medical schools are encouraged to adopt and adapt this framework to align with their needs, resources, and circumstances.
Background and Objectives: This study aimed to investigate the novel adiponectin–resistin (AR) index as a predictor of the development of metabolic syndrome (MetS) in individuals with type 2 diabetes mellitus (T2DM). MetS is common in T2DM and increases cardiovascular risk. Adiponectin and resistin, adipokines with opposing effects on insulin sensitivity and inflammation, make the AR index a potential marker for metabolic risk. Materials and Methods: This prospective observational study included 80 T2DM participants (ages 30–60) from Sarajevo, Bosnia and Herzegovina, over 24 months. The participants were divided into two groups: T2DM with MetS (n = 48) and T2DM without MetS (n = 32). Anthropometric data, biochemical analyses, and serum levels of adiponectin and resistin were measured at baseline and every six months. The AR index was calculated using the formula AR = 1 + log10(R) − 1 + log10(A), where R and A represent resistin and adiponectin concentrations. Logistic regression identified predictors of MetS. Results: T2DM patients who developed MetS showed a significant decline in adiponectin levels (40.19 to 32.49 ng/mL, p = 0.02) and a rise in resistin levels (284.50 to 315.21 pg/mL, p = 0.001). The AR index increased from 2.85 to 2.98 (p = 0.001). The AR index and resistin were independent predictors of MetS after 18 months, with the AR index showing a stronger predictive value (p = 0.007; EXP(B) = 1.265). Conclusions: The AR index is a practical marker for predicting MetS development in T2DM participants, improving metabolic risk stratification. Incorporating it into clinical assessments may enhance early detection and treatment strategies.
ABSTRACT Background: The triglyceride/high-density lipoprotein (TG/HDL) ratio emerges as a promising marker for cardiovascular risk. However, the relationship between overall serum lipid levels and hemorrhagic stroke (HS) remains uncertain. Therefore, our study aims to explore the association between this novel index and mortality in HS patients. Methods: Utilizing a retrospective-prospective framework from January 2020 to August 2023, we scrutinized data from 104 hospitalized patients diagnosed with HS, with particular attention to their medical backgrounds and lipid profiles. Results: Age (odds ratio [OR], 1.078; 95% confidence interval [CI], 1.032–1.125; P = 0.001), atrial fibrillation (OR, 0.237; 95% CI, 0.074–0.760; P = 0.015), glucose level (OR, 1.121; 95% CI, 1.007–1.247; P = 0.037), and TG/HDL index (OR, 0.368; 95% CI, 0.173–0.863; P = 0.020) emerged as independent predictors for in-hospital mortality, as determined by both univariable and multivariable logistic regression analyses. Conclusion: Our results add weight to the growing evidence backing the utility of the TG/HDL index in assessing cardiovascular risk among HS patients. They emphasize the necessity of adopting a comprehensive risk assessment and management strategy that incorporates both traditional markers and novel indicators.
Introduction: Diabetes mellitus is associated with systemic complications, including the development of pulmonary injury, characterized mainly by excessive accumulation of extracellular matrix components and inflammatory cell infiltration in lung tissue. This process is driven by oxidative stress and chronic inflammation, both caused and exacerbated by hyperglycemia. N-acetylcysteine (NAC) and glycine, known for their antioxidant and anti-inflammatory effects, offer potential therapeutic benefits in mitigating diabetes-induced lung injury. Objective: The study aimed to investigate the effects of supplementation by either NAC or glycine or their combination on reducing lung injury in rats with type 1 diabetes Materials and methods: The study used 30 adult Wistar albino rats (10 weeks old, weighing between 180 g and 380 g). Six of them were used as controls, while 24 adult rats (10 weeks old, 180-380 g) with type 1 diabetes, induced through a single intraperitoneal injection of streptozotocin (STZ) at a dose of 55 mg/kg, were randomly assigned to four experimental groups: control (CTL), diabetic (Db), NAC treatment (diabetic+NAC), glycine treatment (diabetic+glycine), and combined NAC and glycine treatment (diabetic+NAC+glycine). NAC (100 mg/kg) and glycine (250 mg/kg) were administered orally for 12 weeks. At the end of the study, lung tissues were collected for histopathological examination. Qualitative, semi-quantitative, and stereological histological analysis was used to analyze structural changes in the lung tissue. Semi-quantitative scoring was carried out to evaluate the extent of inflammation, while stereological analysis was performed to determine the volume density of alveolar spaces and septal connective tissue. The semi-quantitative scoring included scores ranging from 0 (absent), 1 (minimal), 2 (mild), 3 (moderate), to 4 (severe). Results: Qualitative histological analysis revealed pronounced inflammation and fibrosis in the lungs of untreated diabetic rats, characterized by thickened alveolar septa and immune cell infiltration. Both treatments with NAC and glycine individually reduced inflammation and fibrosis compared to untreated diabetic rats. The greatest improvement was observed in the NAC+glycine group, where the alveolar structure appeared almost normal, with minimal inflammation. Semiquantitative analysis showed statistically significant differences in peribronchial and peribrochiolar infiltrates between the diabetic group (2.16±0.47) and the control group (0.33±0.21, p=0.026). The combination of NAC and glycine significantly reduced peribronchial and peribronchiolar infiltrates (0.33±0.33, p=0.026) compared to the diabetic group. Similarly, septal inflammatory infiltrates were significantly lower in the NAC+glycine group (1±0.36) compared to diabetic rats (3.33±0.33, p=0.004). Total airway inflammatory infiltration was also significantly reduced in the NAC+glycine group (1.33±0.33, p=0.002) compared to the diabetic group (5.5±0.5). Conclusion: As the combination of NAC and glycine demonstrated protective effects against lung inflammation and fibrosis in diabetic rats, a synergistic effect of NAC and glycine in mitigating pulmonary complications associated with type 1 diabetes may be suggested. These findings warrant further exploration of the combination for managing diabetic lung disease and potentially other fibrotic conditions.
Objective To evaluate the systemic immune-inflammation (SII) index in patients with rheumatoid arthritis (RA) stratified by systemic inflammatory status. Methods Seropositive patients with RA (n=58) were divided into two groups based on serum hs-C-reactive protein (hs-CRP) levels: RA patients with hs-CRP levels of at or 3 mg/L or above (high systemic inflammatory status; n=38) and RA patients with hs-CRP levels of less than 3 mg/L (low systemic inflammatory status; n=20). The control group comprised 31 healthy individuals. Blood samples were tested for the next parameters: leukocytes, neutrophilic granulocytes, lymphocytes, thrombocytes [platelet (PLT)], high-sensitivity hs-CRP, sed rate [erythrocyte sedimentation rate (ESR)], neutrophil-to-lymphocyte ratio (NLR), platelet-to-lymphocyte ratio (PLR), and monocyte-to-lymphocyte ratio (MLR). The SII index was derived as Neu x PLT/Lym. Results In patients with RA, the SII index was elevated compared with that of healthy individuals and positively correlated with hs-CRP, erythrocyte sedimentation rate, NLR, MLR, PLR, tender joint count, and swollen-to-tender joint count ratio. Patients with RA who had hs-CRP levels of 3 mg/L above exhibited a statistically significant increase in the SII compared with those with hs-CRP levels below 3 mg/L. Additionally, within the cohort of RA patients with hs-CRP levels at or above 3 mg/L, a positive correlation was found between the SII index and both NLR and PLR. The SII index was positively correlated with NLR, MLR, and PLR in RA patients with hs-CRP levels below 3 mg/L. The cut-off point of the SII index for distinguishing between RA cases with hs-CRP levels 3 mg/L and those with hs-CRP levels 3 mg/L or higher was ≥323.4, with a sensitivity of 77.6% and a specificity of 54.8%. Conclusions The serum SII index can be a potentially useful marker for evaluating the inflammatory process and clinical progression of RA.
Introduction: Neovascular glaucoma (NVG) is a severe type characterized by forming new blood vessels on the iris and the anterior chamber angle, often resulting from ischemic retinal diseases. Pars plana vitrectomy (PPV) is a standard surgical procedure for treating various retinal and vitreous conditions. Understanding the risk factors associated with NVG development following PPV is crucial for improving patient outcomes. Objective: To identify and evaluate demographic, clinical, and surgical risk factors associated with developing NVG following PPV. Patients and methods: A prospective cohort study was conducted over two years, involving 60 type 2 diabetes mellitus (T2DM) patients (31 males and 29 females; mean age 60.48±9.63 years) who underwent PPV at the Eye Clinic and Department of Clinical Immunology, University Clinical Center Sarajevo, Sarajevo, Bosnia and Herzegovina. Patients were thoroughly informed about the study, and written informed consent was obtained. Comprehensive data collection included demographic information, medical history, preoperative and postoperative eye examinations, and intraoperative details. Statistical analyses were performed using IBM SPSS Statistics for Windows, Version 21 (Released 2012; IBM Corp., Armonk, New York, United States). Results: Within 12 months postoperatively, 17 patients (28.3%) developed NVG. Significant preoperative risk factors for NVG included prolonged duration of T2DM (p=0.037), elevated preoperative intraocular pressure (IOP) (p=0.024), and higher levels of vascular endothelial growth factor (VEGF) (p=0.011). Intraoperative factors, such as sharp dissection (p=0.000) and operative complications (p=0.004), were also significantly associated with NVG development. Multivariate logistic regression analysis identified prolonged T2DM duration (OR 1.132, p=0.023), increased preoperative IOP (OR 1.192, p=0.029), elevated VEGF levels (OR 1.002, p=0.016), and intraoperative sharp dissection (OR 0.114, p=0.006) as independent risk factors. Conclusions: Multiple preoperative and intraoperative factors influence the development of NVG post-PPV. Prolonged T2DM duration, elevated preoperative IOP, high VEGF levels, and specific intraoperative techniques significantly increase the risk of NVG. These findings underscore the importance of careful preoperative assessment and tailored intraoperative strategies to mitigate NVG risk in PPV patients.
Background Acute pancreatitis (AP) is a condition with various etiological factors, marked by the sudden onset of inflammation in the pancreatic tissue. Predicting the severity and potential mortality of AP involves analyzing clinical data alongside laboratory tests and imaging. Among several grading methods with strong predictive capabilities for illness severity and mortality, the Bedside Index for Severity in Acute Pancreatitis (BISAP) score is notable. This study aims to explore the potential role of laboratory markers, specifically red cell distribution width (RDW), RDW/platelet (PLT) ratio, and mean platelet volume (MPV), in predicting disease severity, with patients being stratified according to the BISAP scoring system. Materials and methods This research included 161 patients hospitalized at Cantonal Hospital Zenica in Zenica, Bosnia and Herzegovina, with a diagnosis of AP. The BISAP score was determined based on laboratory and radiological analyses. This score was used to evaluate potential correlations between laboratory findings such as RDW, RDW/PLT ratio, and MPV. Results The age range was significantly higher in patients with BISAP scores ≥3 (68 years, 64-76) compared to those with BISAP scores <3 (59.5 years, 42.75-69) (p = 0.000). RDW values were also significantly higher in patients with BISAP scores ≥3 (15.6%, 14-16.9) compared to those with BISAP scores <3 (13.5%, 13-14.1) (p = 0.000). Hospital stay duration was significantly longer for patients with BISAP scores ≥3 (9 days, 6-11) compared to those with BISAP scores <3 (5 days, 5-7) (p = 0.000). Additionally, the RDW/PLT ratio was significantly lower in patients with BISAP scores <3 (0.063 ± 0.02) compared to those with BISAP scores ≥3 (0.09 ± 0.059) (p = 0.012). Conclusion Our results indicate a significant difference in RDW/PLT ratios between patient severity groups based on BISAP scores (scores <3 vs. ≥3). This suggests that the RDW/PLT ratio may serve as a useful predictor for assessing the severity of AP. However, further research is needed to explore the full potential of the RDW/PLT ratio in evaluating AP patients.
Introduction: Despite ongoing findings on the relationship between liver fibrosis in nonalcoholic fatty liver disease (NAFLD) and metabolic syndrome (MetS), this association in diabetic patients remains unclear. Early diagnosis of liver fibrosis is important due to the easily available diagnostic tools, such as noninvasive indices that combine clinical and laboratory variables, and the possibility of preventing its complications in type 2 diabetes mellitus (T2DM) patients with MetS. Objective: This study examines the potential predictive values of non-invasive liver fibrosis indices for MetS in T2DM patients. Patients and methods: Over the course of a two-year prospective, observational, clinical study, 80 individuals with T2DM randomly selected from the Diabetes Counseling Centers of the Public Institution Health Center of Sarajevo Canton were divided into two groups: T2DM-MetS and T2DM-non-MetS, based on the development of MetS. The study included individuals with T2DM aged 30 to 60 who were clinically diagnosed without MetS, voluntarily agreed to participate, and provided complete data in the collection forms. Serum samples from the patients were assessed for levels of liver enzymes, platelet counts, total cholesterol, high-density lipoprotein cholesterol, fasting glucose, and triglycerides. Various equations were utilized to calculate liver fibrosis indices, including the Aspartate Aminotransferase to Platelet Ratio Index (APRI), Aspartate Aminotransferase to Gamma-Glutamyl Transferase to Platelet Ratio (AGPR), Aspartate Aminotransferase to Alanine Aminotransferase Ratio to Platelet Ratio Index (AARPRI), Fibrosis-4 (FIB-4) Index, Forns Index, and Gamma-Glutamyl Transpeptidase to Platelet Ratio (GPR). Receiver operating characteristic (ROC) analysis was utilized to determine the usefulness of noninvasive liver fibrosis indices for diagnosing MetS in individuals with T2DM. Logistic regression analysis was used to predict the onset of MetS in T2DM patients. Results: Significant differences in the values of APRI (p<0.001), AGPR (p<0.05), AARPRI (p<0.001), and the FIB-4 index (p=0.001) were observed in T2DM-MetS individuals compared to T2DM-non-MetS. According to ROC analysis, the area under the curve (AUC) was found to be highest for APRI (0.84), followed by FIB-4 (0.783) and AARPRI (0.747). Logistic regression analysis identified APRI as an independent positive predictor of MetS (OR 18.179, 95% CI 6.035-24.58, p=0.015). Conclusion: This research highlights the effectiveness of the APRI index as a reliable predictor of MetS development in individuals with T2DM.
Ova stranica koristi kolačiće da bi vam pružila najbolje iskustvo
Saznaj više