Schiff bases are organic compounds formed by the reaction of the primary amine with carbonyl compounds (aldehydes or ketones). These are mainly bi- or tridentate ligands capable of forming very stable complexes with transitional metals. They are used as catalysts in oxygenation, hydrolysis, electro-reduction and decomposition reactions. Many Shiff bases show significant anti-tumor and antimicrobial activity, which is why they are the subject of research by many scientists in the world. In this paper Schiff's base from benzidine and 1,3-diphenyl-1,3-propanedione was synthesized. To characterize the product, FTIR spectroscopy and stereo-microscopy were used. In order to determine biological activity, antibacterial, antifungal and antioxidant activity of the product was tested. The results showed that the interaction of benzidine and 1,3-diphenylpropandione results in a Schiff base showing antibacterial, antifungal and antioxidant activity. Keywords: Schiff base, benzidine, FTIR, UV/Vis, antimicrobial activity.
Spring saffron (lat. Crocus vernus (L.) Hill) is a perennial from the Iridaceae family. Purple or white coloured flowers bloom in the early spring. Saffron is commonly used in cookery, but because of its healing properties, crocus is also used in medicine for improving blood circulation, treating the cardiovascular diseases, preventing tumour and healing skin diseases. This research aimed to determine the influence of solvents (water, ethanol and acetone) on antioxidative, antimicrobial activity and the content of biologically important compounds, such as phenols and flavonoids in saffron. FRAP and DPPH methods were used to examine antioxidative activity. Antibacterial activity was analysed by using diffusion technique on bacterial strains of Escherichia coli, Enterococcus faecalis, Staphylococcus aureus, Bacillus subtilis, Listeria monocytogenes , and Pseudomonas aeruginosa . Antifungal activity was examined on Candida albicans . The results showed that the ethanol extracts have the highest antioxidant activity and the aqueous extracts have the lowest one. None of the tested extracts showed antibacterial activity, but aqueous extracts and ethanolic extract of saffron, obtained by maceration, showed antifungal activity.
Green Tea, made from Camellia sinensis plant leaves, is one of the most popular drinks in the world. For the past decades, scientists have studied this plant in terms of potential health benefits. Research has shown that green tea helps prevent stroke, malignancy and infections. In this paper, antioxidant activity and total phenol content of 4 samples of green tea from local Tuzla stores were investigated, of which two were of foreign origin. The antioxidant activity of the samples was analyzed using FRAP and DPPH methods. The obtained results show that the highest content of total phenols and the largest antioxidant capacity has a sample of foreign origin. The content of total phenols in the samples ranges from 60.01 to 79.34 mg GAE/g. The highest FRAP value is 3.34 mmol/g. The antioxidant capacity was also confirmed by the DPPH method. The IC50 value ranges from 0.014 to 0.030 mg/mL. Keywords-Phenol, FRAP, DPPH, Green Tea
Schiff bases and complexes are today the subject of many studies because of the established biological, inhibitor and catalytic properties. The aim of this paper is to investigate the interaction of Schiff base obtained by reaction of 2,2-dihydroxyindane-1,3-dione (ninhydrin) and the essential amino acid tryptophan with copper(II) ion. Spectral characterization and examination of the potential antimicrobial and antioxidant activity of the synthesized complex were performed. The imine Cu(II) complex is characterized by FTIR and UV/Vis spectroscopy. Stoichiometric M:L ratio was determined by Joe and Yones method. Antioxidant activity was tested by DPPH and FRAP method. Antibacterial and antifungal activity was determined by diffusion technique on reference strains from the ATCC collection. The results showed that the synthesized Schiff base coordinates the Cu(II) ion as a tridentate ligand, in a molar ratio of 1:2 (M:L). The synthesized complex showed significant antioxidant activity. The antimicrobial effect of the Cu(II) complex in the case of S. aureus, E. faecalis, L. monocytogenes, B. subtilis and C. albicans was obtained, with inhibition zones of 11-20 mm.
The aim of this work was to investigate the interaction of Imatinib mesylate with biological ions Cu(II), Co(II) and Ni(II) in ethanol/water solutions. Structures of synthesized complexes were characterized by spectroscopy methods. Stereo-microscopy was used for determination of morphological properties of obtained crystals. The results of IR spectroscopy showed that biogenic metal complexes with ImM were formed through the oxygen donors of mesylate ion. Changes of crystals colours and sizes of the parent ligand and complexes were clearly seen. Antimicrobial screening revealed a significant effect of Co(ImM)2 complex on the tested microorganisms. This complex also showed significant antioxidant activity compared to Ni(II) and Cu(II) complexes.
Ciprofloxacin, CFL is a drug that belongs to the second generation of fluoroquinolone antibiotics with a wide range of effects on Gram-positive and Gram-negative bacteria. The aim of this work was to investigate the interaction of CFL as ligand with divalent biological cations (Mn2+, Ni2+ and Co2+) in approximate physiological conditions. Synthesized complexes were characterized using FTIR and stereo-microscopy. Antimicrobial screening was performed on bacterial strains of Escherichia coli, Salmonella Enteritidis, Enterococcus faecalis and Staphylococcus aureus. The results of FTIR spectroscopy showed that the M(II) complexes with CFL were formed through the oxygen donors of the carboxyl and carbonyl group of the ligand. Stereo-microscopic characterization revealed the difference in color and size of crystals of the ligand and metal complexes. Antimicrobial screening has shown that CFL and complexes have almost similar antimicrobial activity against investigated bacterial strains.
The use of nanotechnology in the diagnosis of diseases, treatment and monitoring of cancer patients has become a subject of study for the last 20 years. This paper presents brief overview of general characteristics, synthesis and application of dendrimers and quantum points in oncology. Dendrimers and quantum dots are nanostructures whose application in oncology is still being examined. QDs are used in magnetic resonance, wherein very well detect the location of tumor. Dendrimers are intensively tested, especially in cancer therapy. Dendrimers are intensively tested, especially in cancer therapy, because, due to their extremely small dimensions, they have the ability to pass through the mucous barriers and vascular pores, enabling safe delivery of the drug to the tumor cells.
Biodegradable polymers (biopolymers) represent materials of new generation with application in different areas of human activity. Their production has recently reached a commercial level. They can be divided according to the origin (natural and synthetic), according to the chemical composition, methods of obtaining, application etc. The use of biopolymers in medicine depends on their biocompatibility, mechanical resistance, and sorptive characteristics. Today, they are the most commonly used as implants in vascular and orthopedic surgery, for the production of materials such as catheters, products for gynaecology and haemodialysis, tooth reconstruction, etc. In pharmacy, they are used as a medicine matrix-carrier to allow controlled release of drug within the body. Within this review paper, the properties and methods of production of certain biopolymers such as polyglycolic acid (PGA), polylactide acid (PLA), poly-ε-coprolactone (PCL) and polybutylene succinate (PBS) will be described in detail, as well as their application in medicine and pharmacy.
Nema pronađenih rezultata, molimo da izmjenite uslove pretrage i pokušate ponovo!
Ova stranica koristi kolačiće da bi vam pružila najbolje iskustvo
Saznaj više