User Name

Amra Bratovcic

Amra Bratovčić redovna je profesorica  na užoj naučnoj oblast „Fizikalna hemija i elektrohemija“ na Tehnološkom fakultetu Univerziteta u Tuzli. 

Društvene mreže:


University of Tuzla
Full Professor

- The low recovery of oil (only one-third) is mainly related to the displacement efficiency of porous media, which is influenced by wettability and interfacial tension. Since a large amount of oil deposits, two third of the original oil-in-place is trapped by the capillary forces, and there is a need to recover residual oil by improving oil recovery techniques. Although gas, thermal, microbial, and chemical injection is very popular and highly used techniques, they have some disadvantages. Therefore, tertiary oil recovery techniques, such as the application of nanofluids and nanocomposites, may solve this problem. The selection of appropriate techniques depends on the reservoir and economics. The mobility ratio and the mechanisms for nano-enhanced oil recovery have also been explained. Silica, zinc oxide, titanium dioxide, carbon-based nanoparticles, graphene quantum dots, graphene oxide nanosheets, and anionic surfactants are widely used in enhanced oil recovery research. Nanocomposites were discussed recently prepared, including potassium chloride/silicon dioxide/xanthan and zinc oxide/silicon dioxide/xanthan nanocomposite and others. The reviewed literature experimental data has shown that it is possible to increase the enhanced oil recovery in the 10 to 79% range depending on the applied nanofluid or nanocomposite.

The presence of plastic waste in large quantities in the environment is a major problem and therefore a challenge for many researchers to examine the most effective methods of their disposal. In this paper, the source of microplastic and its hazardous effect on human health and interactions of plastics with plants were studied. Due to the specific physical-chemical features of micro- and nano-plastics, they are ideal candidates for the adsorption of organic pollutants, pathogens and heavy metals. The uptake and accumulation of nanoplastics by plants, adsorption studies, and bioaccumulation are shown here. In addition, recent research on the interaction of polystyrene micro- and nanoplastics with plants has been discussed. Many studies have shown that the most affected part of the plant was the roots, followed by leaves, shoots, and then the stem. Nanoplastics are found to be more harmful than microplastics due to permeation through the biological membranes of plants, while microplastics adhere to leaves.

Cilj ovog preglednog rada je procijeniti mogućnosti primjenepojmova industrije 4.0 uključujući optimizaciju velikih podataka, integraciju senzora, umjetne inteligencije, Internet stvari (IoT) što dovodi do najnižih mogućih troškova i najvećeg mogućeg učinka putem pametne kontrole procesa, održive proizvodnje i praćenja. Senzori su vitalne komponente industrije 4.0 i različite vrste detektora i senzora se koriste u industriji pakiranja hrane za prenošenje informacija o kvaliteti hrane i povećanje sigurnosti hrane. Ovdje će se diskutirati o vremensko-temperaturnim indikatorima, vizualnim (u boji) indikatorima, indikatorima O2 i CO2, indikatorima svježine, pH indikatorima, indikatorima otrova i indikatoru radio frekvencije koji automatski otkriva i prati proizvod. Na temelju korištenja kreditne kartice moguće je otkriti ponašanje kupaca i potrošača. Virtualne trgovine popularne su za uredske radnike. Korištenjem umjetne inteligencije moguće je izraditi robotsku kuhinju koja može kuhati prema željama korisnika, a za rezanje hrane u određenim oblicima koristi se tehnologija 3-D printanja.

The aim of this review was to evaluate possibilities of implementing concepts of Industry 4.0 including big data optimization, integration of sensors, artificial intelligence, and Internet of things (IoT), leading to the lowest possible costs and the highest possible output through smart control of the process, sustainable production, and monitoring. Sensors are vital components of Industry 4.0 and different types of detectors and sensors are used in the food packaging industry to convey information about food quality and to increase food safety. The paper will discuss time-temperature indicators, visual (color) indicators, O2 and CO2 indicators, freshness indicators, pH indicators, poison indicators and a radio frequency indicator that automatically detect and track the product. Based on credit card use it is possible to reveal the behavior of the customers and consumers. Virtual shops are popular for office workers. By using artificial intelligence, it is possible to create a robotic kitchen, which can cook according to the wishes of users, while 3-D printing technologyis used to cut food in certain shapes.

W. Hikal, H. S. Said-Al Ahl, K. Tkachenko, A. A. Mahmoud, Amra Bratovcic, S. Hodžić, M. Atanassova

Agricultural waste has always been a global problem that causes environmental pollution, and thanks to the efforts of scientists, this agricultural waste has become not a neglected product, but rather a source of many effective chemical compounds that have industrial, pharmaceutical and food applications. Viral disease therapy has attracted a great deal of scientific interest worldwide. Therefore, the pace of research is increasing for effective and safe treatment. The potential inhibitory activity of pomegranate peel extract polyphenols against virus for effective viral disease therapy has attracted a great deal of scientific interest. The aim of this review was to present an overview of the pomegranate peel effects on viruses such as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), Influenza virus, Norovirus, Adenovirus, Herpes simplex virus, Coronavirus disease (COVID-19). Pomegranate is consumed as fresh fruit and juice for its reported health benefits as antioxidant, antidiabetic, hypolipidemic, antibacterial, anti-inflammatory, antiviral, anticarcinogenic activities, and improves cardiovascular as well as oral health. The health benefits of pomegranate have been attributed to its wide range of phytochemicals, which are predominantly polyphenols, ellagitannins, anthocyanins, and other polyphenols. Instead of the pomegranate peel being a neglected product, it is considered as a promising antiviral agent which also offers other health benefits without side effects.

K. Biswas, A. K. Mishra, P. R. Rauta, A. Al‐Sehemi, M. Pannipara, Avik Sett, Amra Bratovcic, S. Avula, T. Mohanta et al.

At present, the potential role of the AgNPs/endo-fullerene molecule metal nano-composite has been evaluated over the biosystems in-vitro. The intra-atomic configuration of the fullerene molecule (C60) has been studied in-vitro for the anti-proliferative activity of human breast adenocarcinoma (MDA-MB-231) cell lines and antimicrobial activity against a few human pathogens that have been augmented with the pristine surface plasmonic electrons and antibiotic activity of AgNPs. Furthermore, FTIR revealed the basic vibrational signatures at ~3300 cm−1, 1023 cm−1, 1400 cm−1 for O-H, C-O, and C-H groups, respectively, for the carbon and oxygen atoms of the C60 molecule. NMR studies exhibited the different footprints and magnetic moments at ~7.285 ppm, explaining the unique underlying electrochemical attributes of the fullerene molecule. Such unique electronic and physico-chemical properties of the caged carbon structure raise hope for applications into the drug delivery domain. The in-vitro dose-dependent application of C60 elicits a toxic response against both the breast adenocarcinoma cell lines and pathogenic microbes. That enables the use of AgNPs decorated C60 endo fullerene molecules to design an effective anti-cancerous drug delivery and antimicrobial agent in the future, bringing a revolutionary change in the perspective of a treatment regime.

Recently, nanotechnology is widely used in agriculture with the aim of achieving high agricultural yields. Due to the unique surface and physicochemical properties, nanomaterials can be used to deliver nutrients to plants via nanoparticles, for the synthesis of nanopesticides, nanofungicides, and to design nanosensors for the detection of very low concentrations of pesticides and other contaminants. Excessive use of pesticides and fertilizers causes the loss of soil biodiversity and the development of resistance to pathogens. Nenoencapsulation of fertilizers, pesticides and herbicides is used for slow and specific dosed release of nutrients as well as agrochemicals. This paper discusses the applications of nanotechnology and their positive effect in agriculture in relation to the common methods used so far.

This review mainly focuses on nanoparticle-based drug delivery systems fabricated from plants (starch, cellulose, pectin), animals (chitosan, gelatin) and microorganisms (dextran). Herein, the focus is on the physical-chemical properties of biopolymers and its derivatives and the mechanism of action in the treatments of cancer. Nanoparticle-based drug delivery systems improved efficacy by: increasing half-life of vulnerable drugs and proteins, improving the solubility of hydrophobic drugs, and allowing controlled and targeted release of drugs in diseased site. Of all the mentioned biopolymers, only dextran and pure pectin are problematic. Some clinical studies have shown unexpected side effects caused by dextran such as thrombocytopenia and hepatotoxicity and, pure pectin-based materials, undesirable swelling and corrosion properties. Doxorubicin has been used in combination with almost all of these biopolymers because it is widely used as an effective chemotherapeutic agent in the treatment of many types of solid tumors of the breast, lung, colon, ovary, prostate and bladder.


Pretplatite se na novosti o BH Akademskom Imeniku

Ova stranica koristi kolačiće da bi vam pružila najbolje iskustvo

Saznaj više