With the ever-increasing number of polymer materials and the current number of commercially available materials, the polymer gear design process, regarding the wear lifetime predictions, is a difficult task given that there are very limited data on wear coefficients that can be deployed to evaluate the wear behavior of polymer gears. This study focuses on the classic steel/polymer engagements that result in a wear-induced failure of polymer gears and proposes a simple methodology based on the employment of optical methods that can be used to assess the necessary wear coefficient. Polymer gear testing, performed on an open-loop test rig, along with VDI 2736 guidelines for polymer gear design, serves as a starting point for the detailed analysis of the wear process putting into service a digital microscope that leads to the evaluation of the wear coefficient. The same wear coefficient, as presented within the scope of this study, can be implemented in a rather simple wear prediction model, based on Archard’s wear formulation. The developed model is established on the iterative numerical procedure that accounts for the changes in tooth flank geometry due to wear and investigates the surface wear impact on the contact pressure distribution to completely describe the behavior of polymer gears in different stages of their lifetime. Although a simple one, the developed wear prediction model is sufficient for most engineering applications, as the model prediction and experimental data agree well with each other, and can be utilized to reduce the need to perform time-consuming testing.
This paper investigates the rate of convergence of a certain mixed monotone rational second-order difference equation with quadratic terms. More precisely we give the precise rate of convergence for all attractors of the difference equation $x_{n+1}=\frac{Ax_{n}^{2}+Ex_{n-1}}{x_{n}^{2}+f}$, where all parameters are positive and initial conditions are non-negative.The mentioned methods are illustrated in several characteristic examples. 2020 Mathematics Subject Classification. 39A10, 39A20, 65L20.
In the article, we use the subset sum formula over a finite abelian group on the product of finite groups to derive the number of restricted partitions of elements in the group and to count the number of compositions over finite abelian groups. Later, we apply the formula for the multisubset sum problem on a group $\mathbb{Z}_n$ to produce a new technique for studying restricted partitions of positive integers. 2020 Mathematics Subject Classification. 05A17, 11P81
Who conducts biological research, where, and how the results are disseminated varies among geographies and identities. Identifying and documenting these forms of bias by research communities is a critical first step towards addressing them. We documented perceived and observed biases in movement ecology. Movement ecology is a rapidly expanding sub-discipline of biology, which is strongly underpinned by fieldwork and technology use. First, we surveyed attendees of an international conference, and discussed the results at the conference (comparing uninformed vs informed perceived bias). Although most researchers identified as bias-aware, only a subset of biases were discussed in conversation. Next, by considering author affiliations from publications in the journal Movement Ecology, we found among-country discrepancies between the country of the authors’ affiliation and study site location related to national economics. At the within-country scale, we found that race-gender identities of postgraduate biology researchers in the USA differed from national demographics. We discuss the role of potential specific causes for the emergence of bias in the sub-discipline, e.g. parachute-science or accessibility to fieldwork. Undertaking data-driven analysis of bias within research sub-disciplines can help identify specific barriers and first steps towards the inclusion of a greater diversity of participants in the scientific process.
Global trends in food fortification, particularly in milk, and the increasing availability of fermented milk products have raised awareness of the link between nutrition and health, leading to higher consumption of these products. Consumers’ decisions to purchase fermented milk products are influenced by economic, psychological, cultural, and socio-demographic factors, along with preferences related to brand, price, taste, and nutritional value. This study aims to examine the impact of socio-demographic characteristics on production and marketing factors when purchasing fermented milk products, as well as on the choice of specific brands. The research was conducted using a survey method, with a questionnaire as the primary data collection tool. A total of 326 consumers participated in the survey. Data were analyzed using descriptive statistics, frequency distribution, analysis of variance, and the chi-square test. The results indicate that socio-demographic characteristics significantly influence production and marketing considerations, as well as brand choice when it comes to fermented milk products. However, the chi-square test showed no statistically significant relationship between sociodemographic characteristics and consumer attitudes toward fermented milk products. These findings can help producers and marketers better understand consumer behavior and tailor their strategies accordingly.
Battery power is crucial for wearable devices as it ensures continuous operation, which is critical for real-time health monitoring and emergency alerts. One solution for long-lasting monitoring is energy harvesting systems. Ensuring a consistent energy supply from variable sources for reliable device performance is a major challenge. Additionally, integrating energy harvesting components without compromising the wearability, comfort, and esthetic design of healthcare devices presents a significant bottleneck. Here, we show that with a meticulous design using small and highly efficient photovoltaic (PV) panels, compact thermoelectric (TEG) modules, and two ultra-low-power BQ25504 DC-DC boost converters, the battery life can increase from 9.31 h to over 18 h. The parallel connection of boost converters at two points of the output allows both energy sources to individually achieve maximum power point tracking (MPPT) during battery charging. We found that under specific conditions such as facing the sun for more than two hours, the device became self-powered. Our results demonstrate the long-term and stable performance of the sensor node with an efficiency of 96%. Given the high-power density of solar cells outdoors, a combination of PV and TEG energy can harvest energy quickly and sufficiently from sunlight and body heat. The small form factor of the harvesting system and the environmental conditions of particular occupations such as the oil and gas industry make it suitable for health monitoring wearables worn on the head, face, or wrist region, targeting outdoor workers.
We present the case of a 49-year-old female of Caucasian European descent with chest tightness, fatigue, and palpitations, ultimately diagnosed with primary intracardiac angiosarcoma. Initial echocardiography revealed a significant mass within the right atrium, infiltrating the free wall. Surgical intervention included tumor excision and partial resection of the superior vena cava. Histopathological examination confirmed a high-grade angiosarcoma. Postoperative imaging identified a recurrent mass in the right atrium, suggestive of thrombus, alongside Takotsubo cardiomyopathy. Considering the elevated surgical risks and the presence of cardiomyopathy, management included anticoagulation therapy with Warfarin and adjuvant chemotherapy with Paclitaxel. Follow-up cardiac magnetic resonance imaging demonstrated a recurrent angiosarcoma with superimposed thrombus. This case presents the complex diagnostic and therapeutic landscape of angiosarcoma, highlighting the critical importance of early surgical intervention, advanced imaging techniques, and vigilant postoperative monitoring.
Driving feedback is an important factor that can affect the perceptions of remote drivers of the surrounding environment during teleoperation. This paper focuses on investigating the influence of motion-cueing, sound and vibration feedback on driving behaviour and experience. A prototype teleoperation station is developed with feedback from audio, vibration actuators, and motion cues. Using this prototype, the experiment is carried out in two scenarios: a low-speed disturbance scenario with 30 participants and a dynamic driving scenario with 22 participants. Objective and subjective assessment methods are used to evaluate driving behaviour and experience separately. The results indicate that the combination of motion-cueing, sound and vibration feedback provides the most favourable driving experience for the participants. Specifically, sound and vibration feedback enhance drivers’ sense of speed, while motion-cueing feedback helps in road surface sensing, leading to increased throttle reversal rate in the low-speed disturbance scenario. However, it is noteworthy that motion-cueing feedback does not significantly improve driving performance in the dynamic driving scenario of this study.
Nema pronađenih rezultata, molimo da izmjenite uslove pretrage i pokušate ponovo!
Ova stranica koristi kolačiće da bi vam pružila najbolje iskustvo
Saznaj više