Logo
User Name

Mehmed Nurkanović

Društvene mreže:

This paper investigates the dynamics of non-autonomous cooperative systems of difference equations with asymptotically constant coefficients. We are mainly interested in global attractivity results for such systems and the application of such results to evolutionary population cooperation models. We use two methods to extend the global attractivity results for autonomous cooperative systems to related non-autonomous cooperative systems which appear in recent problems in evolutionary dynamics.

This paper investigates the rate of convergence of a certain mixed monotone rational second-order difference equation with quadratic terms. More precisely we give the precise rate of convergence for all attractors of the difference equation $x_{n+1}=\frac{Ax_{n}^{2}+Ex_{n-1}}{x_{n}^{2}+f}$, where all parameters are positive and initial conditions are non-negative.The mentioned methods are illustrated in several characteristic examples. 2020 Mathematics Subject Classification. 39A10, 39A20, 65L20.

This paper investigates an autonomous discrete-time glycolytic oscillator model with a unique positive equilibrium point which exhibits chaos in the sense of Li–Yorke in a certain region of the parameters. We use Marotto’s theorem to prove the existence of chaos by finding a snap-back repeller. The illustration of the results is presented by using numerical simulations.

This paper investigates an autonomous predator-prey system of difference equations with three equilibrium points and exhibits chaos in the sense of Li-Yorke in the positive equilibrium point. Numerical simulations are presented to illustrate our results.

We use the Kolmogorov-Arnold-Moser (KAM) theory to investigate the stability of solutions of a system of difference equations, a certain class of a generalized May's host-parasitoid model. We show the existence of the extinction, interior, and boundary equilibrium points and examine their stability. When the rate of increase of hosts is less than one, the zero equilibrium is globally asymptotically stable, which means that both populations are extinct. We thoroughly describe the dynamics of 1:1 non-isolated resonance fixed points and have used the KAM theory to determine the stability of interior equilibrium point. Also, we have conducted several numerical simulations to support our findings by using the software package Mathematica.

M. Nurkanović, Mirsad Trumić

In teaching mathematics to first-year undergraduates, and thus in the appropriate calculus textbooks, the task of calculating an integral that satisfies a specific first-order or second-order recurrence relation often appears. These relations are obtained mainly by applying the method of integration by parts. Calculating such integrals is usually tedious, especially for an integer n > 2, time-consuming, and presents the possibility of making a large number of errors when computing involves multiple iterative steps. In [1], it is shown that in two cases (Theorems 2.1. and 2.3), the process of calculating integrals satisfying first-order recurrence relations can be performed quickly using easily memorised closed-form formulas for corresponding primitive functions. The question can rightly be asked whether there is a faster way to calculate other integrals of this type. In this paper, our goal is to give an affirmative answer to such a question, though without convering all situations. Since each recurrence relation is equivalent to a difference equation of the same order, the calculation of integrals mentioned above can be reduced to solving the corresponding difference equations. Since every first-order or second-order linear difference equation is solvable, it follows that for every integral which can be reduced to a first- order or second-order recurrence formula, it is possible to find corresponding primitive functions directly. Sometimes such a procedure is much faster than iterative solving of the integral. Closed-form formulas for the integrals discussed in the following sections are not unknown (see [2]). However, here our goal is to present the idea of computing indefinite integrals using difference equations. We will discuss it in more detail in Section 2. In Section 3, we discuss the application of the results obtained to calculate several improper integrals and the application of some of them in different sciences. An exciting example of such an application is the integral , which in the case n = 1 is used in the kinetic theory of gases, particularly in the Maxwell-Boltzmann distribution of gas molecules by energies (see Remark 4). Also, we compare the formulas obtained by the method of difference equations with the formulas obtained using Wolfram Alpha software (see Remark 5).

This paper investigates the dynamics of non-autonomous competitive systems of difference equations with asymptotically constant coefficients. We are mainly interested in global attractivity results for such systems and the application of such results to the evolutionary population of competition models of two species.

...
...
...

Pretplatite se na novosti o BH Akademskom Imeniku

Ova stranica koristi kolačiće da bi vam pružila najbolje iskustvo

Saznaj više