Logo
User Name

Mustafa Kulenović

Društvene mreže:

This paper investigates the rate of convergence of a certain mixed monotone rational second-order difference equation with quadratic terms. More precisely we give the precise rate of convergence for all attractors of the difference equation $x_{n+1}=\frac{Ax_{n}^{2}+Ex_{n-1}}{x_{n}^{2}+f}$, where all parameters are positive and initial conditions are non-negative.The mentioned methods are illustrated in several characteristic examples. 2020 Mathematics Subject Classification. 39A10, 39A20, 65L20.

A. Brett, M. Kulenović

We investigate the global character of the difference equation of the form $$ x_{n+1} = f(x_n, x_{n-1},\ldots, x_{n-k+1}), \quadn=0,1, \ldots $$ with several equilibrium points, where $f$ is increasing in all its variables. We show that a considerable number of well known difference equations can be embeded into this equation through the iteration process. We also show that a negative feedback condition can be used to determine a part of the basin of attraction of different equilibrium points, and that the boundaries of the basins of attractions of different locally asymptotically stable equilibrium points are in fact the global stable manifolds of neighboring saddle or non-hyperbolic equilibrium points.   2000 Mathematics Subject Classification. 39A10, 39A11

Dž Burgić, S. Kalabuˇsić, M. Kulenović

We investigate the period-two trichotomies of solutions of the equation $$x_{n+1} = f(x_{n}, x_{n-1},x_{n-2}), \quad n=0, 1, \ldots $$ where the function $f$ satisfies certain monotonicity conditions. We give fairly general conditions for period-two trichotomies to occur and illustrate the results with numerous examples.   1991 Mathematics Subject Classification. 39A10, 39A11

This paper investigates an autonomous discrete-time glycolytic oscillator model with a unique positive equilibrium point which exhibits chaos in the sense of Li–Yorke in a certain region of the parameters. We use Marotto’s theorem to prove the existence of chaos by finding a snap-back repeller. The illustration of the results is presented by using numerical simulations.

This paper investigates the dynamics of non-autonomous competitive systems of difference equations with asymptotically constant coefficients. We are mainly interested in global attractivity results for such systems and the application of such results to the evolutionary population of competition models of two species.

M. Kulenović, C. O’Loughlin, E. Pilav

<jats:p>We present the bifurcation results for the difference equation <jats:inline-formula> <math xmlns="http://www.w3.org/1998/Math/MathML" id="M1"> <msub> <mrow> <mi>x</mi> </mrow> <mrow> <mi>n</mi> <mo>+</mo> <mn>1</mn> </mrow> </msub> <mo>=</mo> <mrow> <msubsup> <mi>x</mi> <mi>n</mi> <mn>2</mn> </msubsup> </mrow> <mo>/</mo> <mfenced open="(" close=")" separators="|"> <mrow> <mi>a</mi> <msubsup> <mi>x</mi> <mi>n</mi> <mn>2</mn> </msubsup> <mo>+</mo> <msubsup> <mi>x</mi> <mrow> <mi>n</mi> <mo>−</mo> <mn>1</mn> </mrow> <mn>2</mn> </msubsup> <mo>+</mo> <mi>f</mi> </mrow> </mfenced> </math> </jats:inline-formula> where <jats:inline-formula> <math xmlns="http://www.w3.org/1998/Math/MathML" id="M2"> <mi>a</mi> </math> </jats:inline-formula> and <jats:inline-formula> <math xmlns="http://www.w3.org/1998/Math/MathML" id="M3"> <mi>f</mi> </math> </jats:inline-formula> are positive numbers and the initial conditions <jats:inline-formula> <math xmlns="http://www.w3.org/1998/Math/MathML" id="M4"> <msub> <mrow> <mi>x</mi> </mrow> <mrow> <mo>−</mo> <mn>1</mn> </mrow> </msub> </math> </jats:inline-formula> and <jats:inline-formula> <math xmlns="http://www.w3.org/1998/Math/MathML" id="M5"> <msub> <mrow> <mi>x</mi> </mrow> <mrow> <mn>0</mn> </mrow> </msub> </math> </jats:inline-formula> are nonnegative numbers. This difference equation is one of the perturbations of the sigmoid Beverton–Holt difference equation, which is a major mathematical model in population dynamics. We will show that this difference equation exhibits transcritical and Neimark–Sacker bifurcations but not flip (period-doubling) bifurcation since this difference equation cannot have period-two solutions. Furthermore, we give the asymptotic approximation of the invariant manifolds, stable, unstable, and center manifolds of the equilibrium solutions. We give the necessary and sufficient conditions for global asymptotic stability of the zero equilibrium as well as sufficient conditions for global asymptotic stability of the positive equilibrium.</jats:p>

...
...
...

Pretplatite se na novosti o BH Akademskom Imeniku

Ova stranica koristi kolačiće da bi vam pružila najbolje iskustvo

Saznaj više