Logo
Nazad
M. Kulenović, C. O’Loughlin, E. Pilav
0 26. 11. 2021.

The Neimark–Sacker Bifurcation and Global Stability of Perturbation of Sigmoid Beverton–Holt Difference Equation

<jats:p>We present the bifurcation results for the difference equation <jats:inline-formula> <math xmlns="http://www.w3.org/1998/Math/MathML" id="M1"> <msub> <mrow> <mi>x</mi> </mrow> <mrow> <mi>n</mi> <mo>+</mo> <mn>1</mn> </mrow> </msub> <mo>=</mo> <mrow> <msubsup> <mi>x</mi> <mi>n</mi> <mn>2</mn> </msubsup> </mrow> <mo>/</mo> <mfenced open="(" close=")" separators="|"> <mrow> <mi>a</mi> <msubsup> <mi>x</mi> <mi>n</mi> <mn>2</mn> </msubsup> <mo>+</mo> <msubsup> <mi>x</mi> <mrow> <mi>n</mi> <mo>−</mo> <mn>1</mn> </mrow> <mn>2</mn> </msubsup> <mo>+</mo> <mi>f</mi> </mrow> </mfenced> </math> </jats:inline-formula> where <jats:inline-formula> <math xmlns="http://www.w3.org/1998/Math/MathML" id="M2"> <mi>a</mi> </math> </jats:inline-formula> and <jats:inline-formula> <math xmlns="http://www.w3.org/1998/Math/MathML" id="M3"> <mi>f</mi> </math> </jats:inline-formula> are positive numbers and the initial conditions <jats:inline-formula> <math xmlns="http://www.w3.org/1998/Math/MathML" id="M4"> <msub> <mrow> <mi>x</mi> </mrow> <mrow> <mo>−</mo> <mn>1</mn> </mrow> </msub> </math> </jats:inline-formula> and <jats:inline-formula> <math xmlns="http://www.w3.org/1998/Math/MathML" id="M5"> <msub> <mrow> <mi>x</mi> </mrow> <mrow> <mn>0</mn> </mrow> </msub> </math> </jats:inline-formula> are nonnegative numbers. This difference equation is one of the perturbations of the sigmoid Beverton–Holt difference equation, which is a major mathematical model in population dynamics. We will show that this difference equation exhibits transcritical and Neimark–Sacker bifurcations but not flip (period-doubling) bifurcation since this difference equation cannot have period-two solutions. Furthermore, we give the asymptotic approximation of the invariant manifolds, stable, unstable, and center manifolds of the equilibrium solutions. We give the necessary and sufficient conditions for global asymptotic stability of the zero equilibrium as well as sufficient conditions for global asymptotic stability of the positive equilibrium.</jats:p>

Pretplatite se na novosti o BH Akademskom Imeniku

Ova stranica koristi kolačiće da bi vam pružila najbolje iskustvo

Saznaj više