The current paper investigates the effects of geometric design parameters on the fatigue failure of the drive axle housing using the Finite Element Method (FEM). The study examines the effects of various factors on the fatigue life of the drive axle housing, such as axle housing wall thickness, housing cross-sectional rounding radius, and rounding radius of the central part of the housing. Based on the known material properties and dynamic loads, a CAD/FEM model of the drive axle housing was developed, and a structural analysis was carried out. Based on the results of the structural analysis, critical places on the housing were determined, and fatigue analysis and lifetime prediction were performed. Through a series of simulations, the study reveals that increasing housing wall thickness can significantly improve fatigue performance. Similarly, increasing the rounding radius at the housing cross-section, as well as the rounding radius at the central part of the housing can also lead to improved fatigue performance. However, the effect of increasing the value of these two radii is not as significant as the effect of the wall thickness. These findings give useful information regarding the design and manufacture of drive axle housings for vehicles, intending to reduce the likelihood of fatigue failure.
The aim of this work is to investigate the impact of geometry on the mechanical stability of characteristic structural solutions of plates for internal bone fixation using the finite element method (FEM). Based on the realistic construction of plates for internal bone fixation, 3D geometric and FEM models were formed, and then structural analysis was carried out in the CAD/CAE system CATIA V5. Five different types of plates for internal bone fixa - tion were tested under two types of loads: axial pressure and torque in the case of application to the femur. During the structural analysis, stresses and displacements were monitored at characteristic points of the structure. The most attention was paid to the relative displacements of the bone model fragments, because the stiffness of the plates for the internal fixation of the bone was determined based on them. At the end of the paper, the results of all analyzed plates are presented, their mutual comparison as well as the conclusion in which, based on everything done, it was stated which plate would be the most favorable solution for a given case of bone fracture.
Around a year ago, the test station for flat-plate water cooled solar collectors has been put in operation and equipped with all measuring equipment and instrumentation including data acquisition and processing system at the Mechanical Engineering Faculty in Sarajevo. A short technical description of operational flow diagram including data acquisition system and its “interconnection” with the relevant software interfacing for results evaluation, for the Solar Testing Station, is presented. Using this station the main thermal characteristics of tested solar collectors have been obtained in accordance with appropriate testing methods given in ASHRAE Standard 93-86 and European standard EN 12975-2. The value of time constant of solar collector and graphics review of functions of thermal efficiency and incident angle modifier, as a final report of this kind of test, is shown and discussed. This new methodology of testing and data processing will be compared with 1978 ASHRAE methodology. Measurement techniques and the results of the latest tests will be analyzed, and compared with data obtained by 1978 ASHRAE procedure.
Nema pronađenih rezultata, molimo da izmjenite uslove pretrage i pokušate ponovo!
Ova stranica koristi kolačiće da bi vam pružila najbolje iskustvo
Saznaj više