Logo
User Name

Sadjit Metović

Društvene mreže:

The current paper investigates the effects of geometric design parameters on the fatigue failure of the drive axle housing using the Finite Element Method (FEM). The study examines the effects of various factors on the fatigue life of the drive axle housing, such as axle housing wall thickness, housing cross-sectional rounding radius, and rounding radius of the central part of the housing. Based on the known material properties and dynamic loads, a CAD/FEM model of the drive axle housing was developed, and a structural analysis was carried out. Based on the results of the structural analysis, critical places on the housing were determined, and fatigue analysis and lifetime prediction were performed. Through a series of simulations, the study reveals that increasing housing wall thickness can significantly improve fatigue performance. Similarly, increasing the rounding radius at the housing cross-section, as well as the rounding radius at the central part of the housing can also lead to improved fatigue performance. However, the effect of increasing the value of these two radii is not as significant as the effect of the wall thickness. These findings give useful information regarding the design and manufacture of drive axle housings for vehicles, intending to reduce the likelihood of fatigue failure.

Jasmin Bektešević Jasmin Bektešević, V. Hadžiabdić, M. Mehuljić, Sadjit Metović, Haris Lulić

We study the local dynamics and global character of third-order polynomial difference in the first octant of initial conditions with infinite number of prime period-three solutions (three cycles). It is also presented the case when the observed difference equation may be extended to the whole ℝ𝟑.

V. Hadžiabdić, M. Mehuljić, Jasmin Bektešević, Sadjit Metović

In this paper, we observed the ordinary differential equation (ODE) system and determined the equilibrium points. To characterize them, we used the existing theory developed to visualize the behavior of the system. We describe the bifurcation that appears, which is characteristic of higher-dimensional systems, that is when a fixed point loses its stability without colliding with other points. Although it is difficult to determine the whole series of bifurcations that lead to chaos, we can say that it is a common opinion that it is precisely the Hopf bifurcation that leads to chaos when it comes to situations that occur in applications. Here, subcritical and supercritical bifurcation occurs, and we can say that subcritical bifurcation represents a much more dramatic situation and is potentially more dangerous than supercritical bifurcation, technically speaking. Namely, bifurcations or trajectories jump to a distant attractor, which can be a fixed point, limit cycle, infinity, or in spaces with three or more dimensions, a foreign attractor.

N. Hodžić, A. Kazagić, Sadjit Metović

In this work, various combinations of the NO emission influencing factors and their x combined effects in air staging combustion on level of furnace, using over fire air, were investigated in an experimental lab-scale furnace. At this, process temperature were varied in the range from 950?C to 1450?C, excess air ratio in primary zone in the range ? = 0.9 - 1.2, while distance of over fire air nozzles from the burner outlet varied until a 1 given distance of 2/5 of total length of furnace. Basic fuel is brown coal from Middle Bosnia coal basin, mixed in two coal blends and one coal-woody biomass blend, to combine an effect of fuel characteristics variation on NO emission. Results shows that x an average reduction of NO emission over tested temperature range, when using over x fire air against conventional air supply with over fire air switched off, is 26.5%. At this, much more NO emission reduction for two coal blends were occurred at higher x temperatures ? at 1350?C and above, where an average NO emission reduction is x 32.5%. Furthermore, it was found that the NO emission decreased with an increase in x distance of over fire air nozzles from the outlet level of burner until a distance of 1/3 of total furnace length; with further increase of the distance, NOx emission is stabilised and no further effect to NOx emission reduction was observed, while CO emission and unburnt increased.

N. Hodžić, A. Kazagić, Sadjit Metović

In this work, various combinations of the NO emission influencing factors and their x combined effects in air staging combustion on level of furnace, using over fire air, were investigated in an experimental lab-scale furnace. At this, process temperature were o o varied in the range from 950 C to 1450 C, excess air ratio in primary zone in the range λ = 0.9 1.2, while distance of over fire air nozzles from the burner outlet varied until a 1 given distance of 2/5 of total length of furnace. Basic fuel is brown coal from Middle Bosnia coal basin, mixed in two coal blends and one coal-woody biomass blend, to combine an effect of fuel characteristics variation on NO emission. Results shows that x an average reduction of NO emission over tested temperature range, when using over x fire air against conventional air supply with over fire air switched off, is 26.5%. At this, much more NO emission reduction for two coal blends were occurred at higher x o temperatures – at 1350 C and above, where an average NO emission reduction is x 32.5%. Furthermore, it was found that the NO emission decreased with an increase in x distance of over fire air nozzles from the outlet level of burner until a distance of 1/3 of total furnace length; with further increase of the distance, NO emission is stabilised and x no further effect to NO emission reduction was observed, while CO emission and x unburnt increased.

A. Kazagić, N. Hodžić, Sadjit Metović

This paper presents a research on ash-related problems and emissions during co-firing low-rank Bosnian coals with different kinds of biomass; in this case woody sawdust and herbaceous energy crops Miscanthus. An entrained-flow drop tube furnace was used for the tests, varying fuel portions at a high co-firing ratio up to 30%wt woody sawdust and 10%wt Miscanthus in a fuel blend. The tests were supposed to optimize the process temperature, air distribution (including OFA) and fuel distributions (reburning) as function of SO2 and NOx emissions as well as efficiency of combustion process estimated through the ash deposits behaviors, CO emissions and unburnt. The results for 12 co-firing fuel combinations impose a reasonable expectation that the coal/biomass/Miscanthus blends could be successfully run under certain conditions not producing any serious ash-related problems. SO2 emissions were slightly higher when higher content of woody biomass was used. Oppositely, higher Miscanthus percentage in the fuel mix slightly decreases SO2 emissions. NOx emissions generally decrease with an increase of biomass co-firing rate. The study suggests that co-firing Bosnian coals with woody sawdust and Miscanthus shows promise at higher co-firing ratios for pulverized combustion, giving some directions for further works in co-firing similar multi-fuel combinations.

...
...
...

Pretplatite se na novosti o BH Akademskom Imeniku

Ova stranica koristi kolačiće da bi vam pružila najbolje iskustvo

Saznaj više