Logo
User Name

Sead Delalić

University of Sarajevo

Društvene mreže:

Polje Istraživanja: Applied mathematics

Zlatan Ajanovi'c, Hamza Merzi'c, Suad Krilasevi'c, Eldar Kurti'c, Bakir Kudi'c, Rialda Spahi'c, E. Alickovic, Aida Brankovi'c, Kenan Sehic et al.

Elmedin Selmanovic, Emin Mulaimović, Sead Delalic, Zinedin Kadrić, Zenan Sabanac

Many deep-learning computer vision systems analyse objects not previously observed by the system. However, such tasks can be simplified if the objects are marked beforehand. A straightforward method for marking is printing 2D symbols and attaching them to the objects. Selecting these symbols can affect the performance of the CV system, as similar symbols may require extended training time and a larger training dataset. It is possible to find good symbols differentiated by the given neural network easily. Still, there were no efforts to generalise such findings in the literature, and it is not known if the symbols optimal for one network would work just as well in the other. We explored how transferable symbol selection is between the networks. To this end, 30 sets of randomly selected and augmented symbols were classified by-five neural networks. Each network was given the same training dataset and the same training time. Results were ranked and compared, which allowed the identification of networks which performed similarly so that the symbol selection could be generalised between them.

Sead Delalic, Zinedin Kadrić, Elmedin Selmanovic, Emin Mulaimović, E. Kadušić

Deep learning techniques in computer vision (CV) tasks such as object detection, classification, and tracking can be facilitated using predefined markers on those objects. Selecting markers is an objective that can potentially affect the performance of the algorithms used for tracking as the algorithm might swap similar markers more frequently and, therefore, require more training data and training time. Still, the issue of marker selection has not been explored in the literature and seems to be glossed over throughout the process of designing CV solutions. This research considered the effects of symbol selection for 2D-printed markers on the neural network’s performance. The study assessed over 250 ALT code symbols readily available on most consumer PCs and provided a go-to selection for effectively tracking n-objects. To this end, a neural network was trained to classify all the symbols and their augmentations, after which the confusion matrix was analysed to extract the symbols that the network distinguished the most. The results showed that selecting symbols in this way performed better than the random selection and the selection of common symbols. Furthermore, the methodology presented in this paper can easily be applied to a different set of symbols and different neural network architectures.

...
...
...

Pretplatite se na novosti o BH Akademskom Imeniku

Ova stranica koristi kolačiće da bi vam pružila najbolje iskustvo

Saznaj više