It is well-known that determining the optimal number of guards which can cover the interior of a simple nonconvex polygon presents an NP-hard problem. The optimal guard placement can be described as a problem which seeks for the smallest number of guards required to cover every point in a complex environment. In this paper, we propose an exact twophase method as well as an approximate method for tackling the mentioned issue. The proposed exact approach in the first phase maps camera placement problem to the set covering problem, while in the second phase it uses famous state-of-the-art CPLEX solver to address set covering problem. The performance of our combined exact algorithm was compared to the performance of the approximate one. According to the results presented in the experimental analysis, it can be seen that the exact approach outperforms the approximate method for all instances.
Motivation Gene and species tree reconciliation methods can be used to root gene trees and correct uncertainties that are due to scarcity of signal in multiple sequence alignments. So far, reconciliation tools have not been integrated in standard phylogenetic software and they either lack of performance on certain functions, or usability for biologists. Results We present Treerecs, a phylogenetic software based on duplication-loss reconciliation. Treerecs is simple to install and to use, fast, versatile, with a graphic output, and can be used along with methods for phylogenetic inference on multiple alignments like PLL and Seaview. Availability Treerecs is open-source. Its source code (C++, AGPLv3) and manuals are available from https://project.inria.fr/treerecs/ Contact eric.tannier@inria.fr or david.parsons@inria.fr online.
Motivation: A reconciliation is an annotation of the nodes of a gene tree with evolutionary events—for example, speciation, gene duplication, transfer, loss, etc.—along with a mapping onto a species tree. Many algorithms and software produce or use reconciliations but often using different reconciliation formats, regarding the type of events considered or whether the species tree is dated or not. This complicates the comparison and communication between different programs. Results: Here, we gather a consortium of software developers in gene tree species tree reconciliation to propose and endorse a format that aims to promote an integrative—albeit flexible—specification of phylogenetic reconciliations. This format, named recPhyloXML, is accompanied by several tools such as a reconciled tree visualizer and conversion utilities. Availability and implementation: http://phylariane.univ‐lyon1.fr/recphyloxml/.
Ova stranica koristi kolačiće da bi vam pružila najbolje iskustvo
Saznaj više