Logo
User Name

Eldar Kurtić

Institute of Science and Technology Austria

Društvene mreže:

Shengkun Tang, Oliver Sieberling, Eldar Kurtic, Zhiqiang Shen, Dan Alistarh

Large Language Models (LLMs) have achieved significant success across various NLP tasks. However, their massive computational costs limit their widespread use, particularly in real-time applications. Structured pruning offers an effective solution by compressing models and directly providing end-to-end speed improvements, regardless of the hardware environment. Meanwhile, different components of the model exhibit varying sensitivities towards pruning, calling for non-uniform model compression. However, a pruning method should not only identify a capable substructure, but also account for post-compression training. To this end, we propose DarwinLM, a method for training-aware structured pruning. DarwinLM builds upon an evolutionary search process, generating multiple offspring models in each generation through mutation, and selecting the fittest for survival. To assess the effect of post-training, we incorporate a lightweight, multistep training process within the offspring population, progressively increasing the number of tokens and eliminating poorly performing models in each selection stage. We validate our method through extensive experiments on Llama-2-7B, Llama-3.1-8B and Qwen-2.5-14B-Instruct, achieving state-of-the-art performance for structured pruning. For instance, DarwinLM surpasses ShearedLlama while requiring 5x less training data during post-compression training. Code is at: https://github.com/IST-DASLab/DarwinLM

Eldar Kurtic, Alexandre Marques, Shubhra Pandit, Mark Kurtz, Dan Alistarh

Quantization is a powerful tool for accelerating large language model (LLM) inference, but the accuracy-performance trade-offs across different formats remain unclear. In this paper, we conduct the most comprehensive empirical study to date, evaluating FP8, INT8, and INT4 quantization across academic benchmarks and real-world tasks on the entire Llama-3.1 model family. Through over 500,000 evaluations, our investigation yields several key findings: (1) FP8 (W8A8-FP) is effectively lossless across all model scales, (2) well-tuned INT8 (W8A8-INT) achieves surprisingly low (1-3\%) accuracy degradation, and (3) INT4 weight-only (W4A16-INT) is more competitive than expected, rivaling 8-bit quantization. Further, we investigate the optimal quantization format for different deployments by analyzing inference performance through the popular vLLM framework. Our analysis provides clear deployment recommendations: W4A16 is the most cost-efficient for synchronous setups, while W8A8 dominates in asynchronous continuous batching. For mixed workloads, the optimal choice depends on the specific use case. Our findings offer practical, data-driven guidelines for deploying quantized LLMs at scale -- ensuring the best balance between speed, efficiency, and accuracy.

Eldar Kurtic, Alexandre Marques, Shubhra Pandit, Mark Kurtz, Dan Alistarh

Despite the popularity of large language model (LLM) quantization for inference acceleration, significant uncertainty remains regarding the accuracy-performance trade-offs associated with various quantization formats. We present a comprehensive empirical study of quantized accuracy, evaluating popular quantization formats (FP8, INT8, INT4) across academic benchmarks and real-world tasks, on the entire Llama-3.1 model family. Additionally, our study examines the difference in text generated by quantized models versus their uncompressed counterparts. Beyond benchmarks, we also present a couple of quantization improvements which allowed us to obtain state-of-the-art accuracy recovery results. Our investigation, encompassing over 500,000 individual evaluations, yields several key findings: (1) FP8 weight and activation quantization (W8A8-FP) is lossless across all model scales, (2) INT8 weight and activation quantization (W8A8-INT), when properly tuned, incurs surprisingly low 1-3% accuracy degradation, and (3) INT4 weight-only quantization (W4A16-INT) is competitive with 8-bit integer weight and activation quantization. To address the question of the"best"format for a given deployment environment, we conduct inference performance analysis using the popular open-source vLLM framework on various GPU architectures. We find that W4A16 offers the best cost-efficiency for synchronous deployments, and for asynchronous deployment on mid-tier GPUs. At the same time, W8A8 formats excel in asynchronous"continuous batching"deployment of mid- and large-size models on high-end GPUs. Our results provide a set of practical guidelines for deploying quantized LLMs across scales and performance requirements.

Oliver Sieberling, Denis Kuznedelev, Eldar Kurtic, Dan Alistarh

The high computational costs of large language models (LLMs) have led to a flurry of research on LLM compression, via methods such as quantization, sparsification, or structured pruning. A new frontier in this area is given by \emph{dynamic, non-uniform} compression methods, which adjust the compression levels (e.g., sparsity) per-block or even per-layer in order to minimize accuracy loss, while guaranteeing a global compression threshold. Yet, current methods rely on heuristics for identifying the"importance"of a given layer towards the loss, based on assumptions such as \emph{error monotonicity}, i.e. that the end-to-end model compression error is proportional to the sum of layer-wise errors. In this paper, we revisit this area, and propose a new and general approach for dynamic compression that is provably optimal in a given input range. We begin from the motivating observation that, in general, \emph{error monotonicity does not hold for LLMs}: compressed models with lower sum of per-layer errors can perform \emph{worse} than models with higher error sums. To address this, we propose a new general evolutionary framework for dynamic LLM compression called EvoPress, which has provable convergence, and low sample and evaluation complexity. We show that these theoretical guarantees lead to highly competitive practical performance for dynamic compression of Llama, Mistral and Phi models. Via EvoPress, we set new state-of-the-art results across all compression approaches: structural pruning (block/layer dropping), unstructured sparsity, as well as quantization with dynamic bitwidths. Our code is available at https://github.com/IST-DASLab/EvoPress.

A. Nicolicioiu, Eugenia Iofinova, Eldar Kurtic, Mahdi Nikdan, Andrei Panferov, Ilia Markov, N. Shavit, Dan Alistarh

The availability of powerful open-source large language models (LLMs) opens exciting use-cases, such as automated personal assistants that adapt to the user's unique data and demands. Two key desiderata for such assistants are personalization-in the sense that the assistant should reflect the user's own style-and privacy-in the sense that users may prefer to always store their personal data locally, on their own computing device. We present a new design for such an automated assistant, for the specific use case of personal assistant for email generation, which we call Panza. Specifically, Panza can be both trained and inferenced locally on commodity hardware, and is personalized to the user's writing style. Panza's personalization features are based on a new technique called data playback, which allows us to fine-tune an LLM to better reflect a user's writing style using limited data. We show that, by combining efficient fine-tuning and inference methods, Panza can be executed entirely locally using limited resources-specifically, it can be executed within the same resources as a free Google Colab instance. Finally, our key methodological contribution is a careful study of evaluation metrics, and of how different choices of system components (e.g. the use of Retrieval-Augmented Generation or different fine-tuning approaches) impact the system's performance.

A. Nicolicioiu, Eugenia Iofinova, Andrej Jovanovic, Eldar Kurtic, Mahdi Nikdan, Andrei Panferov, Ilia Markov, N. Shavit, Dan Alistarh

The availability of powerful open-source large language models (LLMs) opens exciting use-cases, such as using personal data to fine-tune these models to imitate a user's unique writing style. Two key requirements for such assistants are personalization - in the sense that the assistant should recognizably reflect the user's own writing style - and privacy - users may justifiably be wary of uploading extremely personal data, such as their email archive, to a third-party service. In this paper, we present a new design and evaluation for such an automated assistant, for the specific use case of email generation, which we call Panza. Panza's personalization features are based on a combination of fine-tuning using a variant of the Reverse Instructions technique together with Retrieval-Augmented Generation (RAG). We demonstrate that this combination allows us to fine-tune an LLM to reflect a user's writing style using limited data, while executing on extremely limited resources, e.g. on a free Google Colab instance. Our key methodological contribution is the first detailed study of evaluation metrics for this personalized writing task, and of how different choices of system components--the use of RAG and of different fine-tuning approaches-impact the system's performance. Additionally, we demonstrate that very little data - under 100 email samples - are sufficient to create models that convincingly imitate humans. This finding showcases a previously-unknown attack vector in language models - that access to a small number of writing samples can allow a bad actor to cheaply create generative models that imitate a target's writing style. We are releasing the full Panza code as well as three new email datasets licensed for research use at https://github.com/IST-DASLab/PanzaMail.

A. Nicolicioiu, Eugenia Iofinova, Eldar Kurtic, Mahdi Nikdan, Andrei Panferov, Ilia Markov, N. Shavit, Dan Alistarh

The availability of powerful open-source large language models (LLMs) opens exciting use-cases, such as automated personal assistants that adapt to the user's unique data and demands. Two key desiderata for such assistants are personalization-in the sense that the assistant should reflect the user's own style-and privacy-in the sense that users may prefer to always store their personal data locally, on their own computing device. We present a new design for such an automated assistant, for the specific use case of personal assistant for email generation, which we call Panza. Specifically, Panza can be both trained and inferenced locally on commodity hardware, and is personalized to the user's writing style. Panza's personalization features are based on a new technique called data playback, which allows us to fine-tune an LLM to better reflect a user's writing style using limited data. We show that, by combining efficient fine-tuning and inference methods, Panza can be executed entirely locally using limited resources-specifically, it can be executed within the same resources as a free Google Colab instance. Finally, our key methodological contribution is a careful study of evaluation metrics, and of how different choices of system components (e.g. the use of Retrieval-Augmented Generation or different fine-tuning approaches) impact the system's performance.

Eldar Kurtic, Amir Moeini, Dan Alistarh

We introduce Mathador-LM, a new benchmark for evaluating the mathematical reasoning on large language models (LLMs), combining ruleset interpretation, planning, and problem-solving. This benchmark is inspired by the Mathador game, where the objective is to reach a target number using basic arithmetic operations on a given set of base numbers, following a simple set of rules. We show that, across leading LLMs, we obtain stable average performance while generating benchmark instances dynamically, following a target difficulty level. Thus, our benchmark alleviates concerns about test-set leakage into training data, an issue that often undermines popular benchmarks. Additionally, we conduct a comprehensive evaluation of both open and closed-source state-of-the-art LLMs on Mathador-LM. Our findings reveal that contemporary models struggle with Mathador-LM, scoring significantly lower than average 3rd graders. This stands in stark contrast to their strong performance on popular mathematical reasoning benchmarks. The implementation of Mathador-LM benchmark is available at https://github.com/IST-DASLab/Mathador-LM.

Ionut-Vlad Modoranu, Mher Safaryan, Grigory Malinovsky, Eldar Kurtic, Thomas Robert, Peter Richtárik, Dan Alistarh

We propose a new variant of the Adam optimizer called MicroAdam that specifically minimizes memory overheads, while maintaining theoretical convergence guarantees. We achieve this by compressing the gradient information before it is fed into the optimizer state, thereby reducing its memory footprint significantly. We control the resulting compression error via a novel instance of the classical \emph{error feedback} mechanism from distributed optimization in which *the error correction information is itself compressed* to allow for practical memory gains. We prove that the resulting approach maintains theoretical convergence guarantees competitive to those of AMSGrad, while providing good practical performance. Specifically, we show that MicroAdam can be implemented efficiently on GPUs: on both million-scale (BERT) and billion-scale (LLaMA) models, MicroAdam provides practical convergence competitive to that of the uncompressed Adam baseline, with lower memory usage and similar running time. Our code is available at https://github.com/IST-DASLab/MicroAdam.

Abhinav Agarwalla, Abhay Gupta, Alexandre Marques, Shubhra Pandit, M. Goin, Eldar Kurtic, Kevin Leong, Tuan Nguyen, Mahmoud Salem et al.

Large language models (LLMs) have revolutionized Natural Language Processing (NLP), but their size creates computational bottlenecks. We introduce a novel approach to create accurate, sparse foundational versions of performant LLMs that achieve full accuracy recovery for fine-tuning tasks at up to 70% sparsity. We achieve this for the LLaMA-2 7B model by combining the SparseGPT one-shot pruning method and sparse pretraining of those models on a subset of the SlimPajama dataset mixed with a Python subset of The Stack dataset. We exhibit training acceleration due to sparsity on Cerebras CS-3 chips that closely matches theoretical scaling. In addition, we establish inference acceleration of up to 3x on CPUs by utilizing Neural Magic's DeepSparse engine and 1.7x on GPUs through Neural Magic's nm-vllm engine. The above gains are realized via sparsity alone, thus enabling further gains through additional use of quantization. Specifically, we show a total speedup on CPUs for sparse-quantized LLaMA models of up to 8.6x. We demonstrate these results across diverse, challenging tasks, including chat, instruction following, code generation, arithmetic reasoning, and summarization to prove their generality. This work paves the way for rapidly creating smaller and faster LLMs without sacrificing accuracy.

...
...
...

Pretplatite se na novosti o BH Akademskom Imeniku

Ova stranica koristi kolačiće da bi vam pružila najbolje iskustvo

Saznaj više