Logo
User Name

Erna Karalija

Društvene mreže:

Chiara Vergata, E. Karalija, Francesco Caleri, Mattia Calvani, A. Piergiovanni, Federico Martinelli

Chickpea and lentils are one of the most important legumes not only as sources of food and nutrients but also for enrichment of soil as a nitrogen fixating crop. An early onset of higher temperatures and drought are affecting chickpea and lentil growth and flowering leading to reduction of yield. In search for a tolerant varieties presented study performed a large-scale screening of two legume varieties (chickpea and lentils) investigating phenotypical response to early onset of drought under heat stress. Under heat stress and two different irrigation conditions, 19 chickpea and 18 lentil accessions were examined. The evaluation focused on their growth, biomass production, and flowering rate in comparison to commercially available varieties. Six chickpea accessions showed tolerance to water stress while only two lentil accessions differed from the rest of tested accessions. Generally, lentils genotypes were less stressed by decreased water availability compared to chickpea. Large scale screening of legume accessions could be a valuable tool to identify new varieties that could show phenotypical traits more adaptable to climate related environmental stresses. To improve the reproductive efficiency in chickpeas and lentils under adverse conditions associated to climate change an extensive breeding effort should be focused on investigation of more tolerant genotypes and cultivation in crop systems.

E. Karalija, Ajna Lošić, A. Demir, Dunja Šamec

The increase in soil salinity has a negative effect on the growth and yield of plants. Mitigating the negative effects of soil salinity is therefore a difficult task and different methods are being used to overcome the negative effects of salt stress on crop plants. One of the often-used approaches is seed priming that can increase plants’ vigor and resilience. In this paper, we tested the effects of hydropriming, proline priming, and salicylic acid priming on the mitigation of the negative effects of salt stress on two bell pepper varieties (Capsicum annuum L.): Herkules and Kurtovska kapija. Sweet bell pepper seeds were primed following desiccation to achieve the original water content, and subsequently cultivated in salt-supplemented medium. The positive effects on vigor (in the form of increased germination and seedling establishment) as well as on level of tolerance for salt stress were recorded for both cultivars. The positive effects varied between the priming treatments and pepper cultivar used. The results of germination, seedling performance, photosynthetic pigments, and osmolytes were measured for seedlings grown from unprimed and primed seeds with under 0, 25, and 50 mM of NaCl. Both cultivars demonstrated greater germination when primed with proline and salicylic acid, while the Herkules cultivar demonstrated a higher tolerance to salt when proline was used as the priming agent. Priming with salicylic acid and proline in the seed improved germination and seedling performance, which could be related to the increase in proline content in the seedlings.

Saida Ibragić, Aisa Mesinovic, Selma Arnaut, Emina Delic, R. Bešta-Gajević, Sabina Dahija, Muamer Dizdar, E. Karalija

This paper aimed to characterize the phytochemical profile and bioactivities of 22 plant species used in the traditional medicine of Bosnia and Herzegovina. The utilization of plants in traditional medicine in Bosnia and Herzegovina holds significant importance, not only as a reflection of cultural heritage but also as a sustainable and time-tested approach to healthcare, fostering a harmonious connection between nature and well-being. The comprehensive analyses encompassed the determination of total phenolic and flavonoid content, alongside assessing antioxidant activity using DPPH and FRAP assays. Additionally, antimicrobial activity was tested against S. aureus. ssp. aureus, MRSA, P. aeruginosa, S. abony and C. albicans. Many of the analyzed plant extracts showed a high phenolic content (C. avellana, V. myrtillus) and antioxidant activity (C. avellana, V. myrtillus, B. pendula, S. officinale, E. angustifolium, J. globifera ssp. hirta). The majority of extracts showed good antimicrobial activity for S. aureus ssp. aureus and MRSA. The E. angustifolium extract was effective against all tested bacterial strains, with MIC values ranging from 1.25-10 mg/mL. The research identified significant levels of secondary metabolites and identified plant species with potent antioxidant and antimicrobial activity. The study also revealed significant correlations among various phytochemical parameters and bioactivities.

Iva Jurčević Šangut, B. Šarkanj, E. Karalija, Dunja Šamec

Biflavonoids are dimeric forms of flavonoids that have recently gained importance as an effective new scaffold for drug discovery. In particular, 3′-8″-biflavones exhibit antiviral and antimicrobial activity and are promising molecules for the treatment of neurodegenerative and metabolic diseases as well as cancer therapies. In the present study, we directly compared 3′-8″-biflavones (amentoflavone, bilobetin, ginkgetin, isoginkgetin, and sciadopitysin) and their monomeric subunits (apigenin, genkwanin, and acacetin) and evaluated their radical scavenging activity (with DPPH), antifungal activity against mycotoxigenic fungi (Alternaria alternata, Aspergillus flavus, Aspergillus ochraceus, Fusarium graminearum, and Fusarium verticillioides), and inhibitory activity on enzymes (acetylcholinesterase, tyrosinase, α-amylase, and α-glucosidase). All the tested compounds showed weak radical scavenging activity, while antifungal activity strongly depended on the tested concentration and fungal species. Biflavonoids, especially ginkgetin and isoginkgetin, proved to be potent acetylcholinesterase inhibitors, whereas monomeric flavonoids showed higher tyrosinase inhibitory activity than the tested 3′-8″-biflavones. Amentoflavone proved to be a potent α-amylase and α-glucosidase inhibitor, and in general, 3′-8″-biflavones showed a stronger inhibitory potential on these enzymes than their monomeric subunits. Thus, we can conclude that 3′-8″-dimerization enhanced acetylcholinesterase, α-amylase, and α-glucosidase activities, but the activity also depends on the number of hydroxyl and methoxy groups in the structure of the compound.

Miriam Negussu, E. Karalija, Chiara Vergata, M. Buti, M. Subašić, S. Pollastri, Francesco Loreto, Federico Martinelli

A. Selović, E. Karalija, A. Demir, A. Parić, Dunja Šamec

Cadmium (Cd) is considered one of the most toxic heavy metals to living organisms, being very persistent in soil and non-biodegradable, thus posing a long-term hazard to plants and humans. In recent years, the application of different molecules at the seed level, known as chemical seed priming, has been studied as a method to improve stress tolerance in plants. In the present study, we tested the effect of hydro-priming and proline priming of lettuce (Lactuca sativa L.) seeds on germination, photosynthetic pigments, and metal metabolism under cadmium stress. Plants primed with proline showed better germination under cadmium stress (100% versus 84% for non-primed and hydro-primed seeds). Priming with 20 mM of proline increased the chlorophyll a and total chlorophyll contents by 40.8% and 18.6%, respectively, while these parameters decreased in other seedlings under Cd stress. Similarly, 20 mM of proline improved the uptake of Zn and Fe in roots under Cd stress. This indicates that 20 mM of proline treatments may be beneficial for maintaining a normal photosynthetic capacity and mineral uptake under Cd stress, but further metabolomics and transcriptomic data should reveal the exact mechanisms of action.

Dolores R. Agius, A. Kapazoglou, E. Avramidou, M. Baránek, E. Carneros, E. Caro, S. Castiglione, A. Cicatelli, Aleksandra Radanović et al.

Epigenetic modifications play a vital role in the preservation of genome integrity and in the regulation of gene expression. DNA methylation, one of the key mechanisms of epigenetic control, impacts growth, development, stress response and adaptability of all organisms, including plants. The detection of DNA methylation marks is crucial for understanding the mechanisms underlying these processes and for developing strategies to improve productivity and stress resistance of crop plants. There are different methods for detecting plant DNA methylation, such as bisulfite sequencing, methylation-sensitive amplified polymorphism, genome-wide DNA methylation analysis, methylated DNA immunoprecipitation sequencing, reduced representation bisulfite sequencing, MS and immuno-based techniques. These profiling approaches vary in many aspects, including DNA input, resolution, genomic region coverage, and bioinformatics analysis. Selecting an appropriate methylation screening approach requires an understanding of all these techniques. This review provides an overview of DNA methylation profiling methods in crop plants, along with comparisons of the efficacy of these techniques between model and crop plants. The strengths and limitations of each methodological approach are outlined, and the importance of considering both technical and biological factors are highlighted. Additionally, methods for modulating DNA methylation in model and crop species are presented. Overall, this review will assist scientists in making informed decisions when selecting an appropriate DNA methylation profiling method.

E. Karalija, Dunja Šamec, Sabina Dahija, Saida Ibragić

As sessile organisms, plants have evolved different strategies to defend themselves against various biotic stressors. An important aspect of the complex response of plants to biotic stress is the emission of volatile compounds (VOCs), which are involved in direct and indirect plant defence mechanisms. Indirect plant defences include a range of plant traits that mediate defence against herbivores and play an important ecological role by not only utilising plants-' own capabilities but also signalling and attracting natural enemies of herbivores. Often the combination of volatiles emitted is specific to herbivores; they are consequently recognised by parasites and other predators, providing a clear link between the volatile signature and the prey. In this review, we focus on indirect plant defence and summarise current knowledge and perspectives on relationships between plants, aphids, and parasitic wasps.

...
...
...

Pretplatite se na novosti o BH Akademskom Imeniku

Ova stranica koristi kolačiće da bi vam pružila najbolje iskustvo

Saznaj više