Abstract The photosynthetic pigments, antioxidant properties, and heavy metal content in Reseda lutea, Epilobium dodonaei, and Gentianella ciliata were examined in response to stress in the open pit of an abandoned iron mine. The soils were shallow, alkaline, and severely deficient in phosphorus, potassium, and humus. Heavy metal concentrations in the rhizospheres followed the order Fe > Mn > Pb > Zn > Cu > Ni > Cr > Cd for all three species, with Cu, Zn, and Pb exceeding the limits established by Bosnian legislation. The results indicated that the bioelements Cu, Zn, and Mn were within permissible limits set by FAO/WHO. Epilobium dodonaei acted as a Cd accumulator. The highest content of photosynthetic pigments was observed in this species. Positive correlations were detected between Cr and total phenolics, Cr and total flavonoids in E. dodonaei, Pb and total phenolic acids in G. ciliata. Negative correlations were noted between Zn and total phenolic acids in R. lutea, and Fe and total phenolics in E. dodonaei. Increased total proline and DPPH concentrations were associated with heightened Fe levels in E. dodonaei. These findings suggest that the species analyzed employ distinct defense mechanisms, enabling them to effectively adapt to stress. NOVELTY STATEMENT Three abundant plant species with different responses to the stress conditions of the abandoned iron mine were the focus. The analyzed biochemical-physiological parameters for all studied species on alkaline soils and, in general, for Gentianella ciliata are presented for the first time.
This study investigates the impact of drying-rewetting and freezing-rewetting events on soil leachate ion composition across two contrasting geochemical settings through a series of controlled laboratory experiments. Dissolution of ions (Na?, K?, Ca??, Mg??, Al??, Fe??, Mn??, F?, Cl?, NO??, SO???, NO??, PO???) in soil leachate was analyzed following rewetting cycles after drying and freezing treatments. Results indicate that variations in leachate ion concentrations are primarily influenced by bedrock type, while drying-rewetting and freezing-rewetting treatments did not significantly impact overall variance. However, some inconsistent differences were observed: higher K? concentrations in calcareous soils and Al??, Fe?? and Mn?? in acidic soils after drying, higher anion concentrations in calcareous soils in both treatment leachates compared to controls. Findings highlight that the effects of drying, freezing, and rewetting are inherently linked to treatment type, ion characteristics, and geochemical conditions.
Many heavy metals (HMs) are essential micronutrients for the growth and development of plants. However, human activities such as mining, smelting, waste disposal, and industrial processes have led to toxic levels of HMs in soil. Fortunately, many plant species have developed incredible adaptive mechanisms to survive and thrive in such harsh environments. As a widespread and ruderal species, Geranium robertianum L. inhabits versatile soil types, both polluted and unpolluted. Considering the ubiquity of G . robertianum , the study aimed to determine whether geographically distant populations can tolerate HMs. We collected soil and plant samples from serpentine, an anthropogenic heavy metal contaminated, and a non-metalliferous site to study the physiological state of G. robertianum . HMs in soil and plants were determined using flame atomic absorption spectrometry. Spectrophotometric methods were used to measure the total content of chlorophylls a and b, total phenolics, phenolic acids, flavonoids, and proline. Principal component analysis (PCA) was used to investigate the potential correlation between HMs concentrations gathered from various soil types and plant samples and biochemical data acquired for plant material. A statistically significant difference was observed for all localities regarding secondary metabolite parameters. A positive correlation between Ni and Zn in soil and Ni and Zn in plant matter was observed ( p <0.0005) indicating higher absorption. Regardless of high concentrations of heavy metals in investigated soils, G. robertianum displayed resilience and was capable of thriving. These results may be ascribed to several protective mechanisms that allow G. robertianum to express normal growth and development and act as a pioneer species.
Genus Silene (Caryophyllaceae) is very rich in secondary metabolites and has an antiviral, antimalarial, antitumor, antibacterial and antioxidant properties, but Balkan endemic Silene sendtneri (Sendtner's campion) is not analyzed from the aspect of phenolic composition and their biological activities. Evaluation of total phenolic contents (TPC) and total flavonoid contents (TFC), and antioxidant and antimicrobial activities of hydromethanolic extracts from inflorescences, stem, rhizome, and seeds of S. sendtneri, was done in this study for the first time. The TPC, TFC, and antioxidant activity (DPPH; 2,2-diphenyl-1-picrylhydrazyl) were determined by UV/VIS spectrophotometry. Antimicrobial activity was estimated against selected test microorganisms (Staphylococcus epidermididis, Staphylococcus aureus subsp. aureus, Salmonella abony, Escherichia coli, and Candida albicans) using a disc diffusion assay. The inflorescences had the highest (11.587 mg GAEg-1 DW) and rhizome the lowest TPC (2.017 mg GAEg-1 DW). The inflorescences extract exhibited the highest TFC (69.824 mg CEg-1 DW), while TFC was not detected in the rhizome extract. The stem’s extract had the highest antioxidant activity (IC50; 20.51%), while the rhizome had the lowest (61.89%). All extracts showed moderate antibacterial activity against Staphylococcus epidermididis and low activity against the three remaining tested organisms. Antifungal activity of inflorescence and rhizome extracts was moderate. Obtained results provide a basis for further investigations of various S. sendtneri extracts, which can be a potential natural antioxidant and antimicrobial agents
Cadmium (Cd) is a heavy metal present in atmosphere, rocks, sediments, and soils without a known role in plants. It is relatively mobile and can easily enter from soil into groundwater and contaminate the food chain. Its presence in food in excess amounts may cause severe conditions in humans, therefore prevention of cadmium entering the food chain and its removal from contaminated soils are important steps in preserving public health. In the last several years, several approaches for Cd remediation have been proposed, such as the use of soil amendments or biological systems for reduction of Cd contamination. One of the approaches is phytoremediation, which involves the use of plants for soil clean-up. In this review we summarized current data on the use of different plants in phytoremediation of Cd as well as information about different approaches which have been used to enhance phytoremediation. This includes data on the increasing metal bioavailability in the soil, plant biomass, and plant accumulation capacity as well as seed priming as a promising novel approach for phytoremediation enhancing.
Ova stranica koristi kolačiće da bi vam pružila najbolje iskustvo
Saznaj više