Logo
User Name

Abdulah Jašarević

Društvene mreže:

Using the strong-field-approximation theory beyond the dipole approximation we investigate above-threshold ionization induced by the monochromatic and bichromatic laser fields. Particular emphasis is on the approach based on the saddle-point method and the quantum-orbit theory which provides an intuitive picture of the underlying process. In particular, we investigate how the solutions of the saddle-point equations and the corresponding quantum orbits and velocities are affected by the nondipole effects. The photoelectron trajectories are two dimensional for linearly polarized field and three dimensional for two-component tailored fields, and the electron motion in the propagation direction appears due to the nondipole corrections. We show that the influence of these corrections is not the same for all contributions of different saddle-point solutions. For a linearly polarized driving field, we focus our attention only on the rescattered electrons. On the other hand, for the tailored driving field, exemplified by the ω–2ω orthogonally polarized two-color field, which is of the current interest in the strong-field community, we devote our attention to both the direct and the rescattered electrons. In this case, we quantitatively investigate the shift which appears in the photoelectron momentum distribution due to the nondipole effects and explain how these corrections affect the quantum orbits and velocities which correspond to the saddle-point solutions. Published by the American Physical Society 2024

The quantum-mechanical transition amplitudes for atomic and molecular processes in strong laser fields are expressed in the form of multidimensional integrals of highly oscillatory functions. Such integrals are ideally suited for the evaluation by asymptotic methods for integrals. Furthermore, using these methods it is possible to identify, in the sense of Feynman's path-integral formalism, the partial contributions of quantum orbits, which are related to particular solutions of the saddle-point equations. This affords insight into the physics of the problem, which would not have been possible by only solving these integrals numerically. We apply the saddle-point method to various quantum processes, which are important in strong-field physics and attoscience. The special case of coalescing or near-coalescing saddle points requires application of the uniform approximation. We also present two modifications of the saddle-point method, for the cases where a singular point of the subintegral function exactly overlaps with a saddle point or is located in its close vicinity. Particular emphasis is on the classification of the saddle-point solutions. This problem is solved for the one-dimensional integral over the ionization time, relevant for above-threshold ionization (ATI), while for two-dimensional integrals a classification by the multi-index $(\alpha,\beta,m)$ is introduced, which is particularly useful for the medium- and high-energy spectrum of high-order harmonic generation (HHG) and backward-scattered electrons (for high-order ATI). For the low-energy structures a classification using the multi-index $(\nu,\rho,\mu)$ is introduced for the forward-scattering quantum orbits. In addition to laser-induced processes such as ATI, HHG and high-order ATI, we consider laser-assisted scattering as an example of laser-assisted processes for which real solutions of the saddle-point equation exist. Particular attention is devoted to the quantum orbits that describe and visualize these processes. We also consider finite laser pulses, the semiclassical approximation, the role of the Coulomb field and the case of laser fields intense enough to lead into the relativistic regime.

In the present paper, we study the high-order above-threshold ionization of noble-gas atoms using a bi-elliptic orthogonal two-color (BEOTC) field. We give an overview of the SFA theory and calculate the differential ionization rate for various values of the laser field parameters. We show that the ionization rate strongly depends on the ellipticity and the relative phase between two field components. Using numerical optimization, we find the values of ellipticity and relative phase that maximize the ionization rate at energies close to the cutoff energy. To explain the obtained results, we present, to the best of our knowledge, for the first time the quantum-orbit analysis in the BEOTC field. We find and classify the saddle-point (SP) solutions and study their contributions to the total ionization rate. We analyze quantum orbits and corresponding velocities to explain the contribution of relevant SP solutions.

...
...
...

Pretplatite se na novosti o BH Akademskom Imeniku

Ova stranica koristi kolačiće da bi vam pružila najbolje iskustvo

Saznaj više