High-Order Above-Threshold Ionization Using a Bi-Elliptic Orthogonal Two-Color Laser Field with Optimal Field Parameters
In the present paper, we study the high-order above-threshold ionization of noble-gas atoms using a bi-elliptic orthogonal two-color (BEOTC) field. We give an overview of the SFA theory and calculate the differential ionization rate for various values of the laser field parameters. We show that the ionization rate strongly depends on the ellipticity and the relative phase between two field components. Using numerical optimization, we find the values of ellipticity and relative phase that maximize the ionization rate at energies close to the cutoff energy. To explain the obtained results, we present, to the best of our knowledge, for the first time the quantum-orbit analysis in the BEOTC field. We find and classify the saddle-point (SP) solutions and study their contributions to the total ionization rate. We analyze quantum orbits and corresponding velocities to explain the contribution of relevant SP solutions.