Assistant Professor (Faculty of Science)
Polje Istraživanja: Analytical chemistry
ABSTRACT This study demonstrates the usage of primarily discarded waste – pomegranate peel as secondary raw material – biosorbent for broader applications. The focus was on the optimisation of key cationic dye methylene blue (MB) – pomegranate peel (PP) adsorption process parameters, as well as cost analysis assessing the possibility of scaling up. The optimal values of the key parameters were pH 6, biosorbent mass 100 mg, contact time of 50 min, and initial analyte concentration 100 mg/L for MB removal from aqueous solutions providing high removal efficiency values > 88%. Fourier-transform infrared spectroscopy (FTIR) showed that MB adsorption on PP was presumably via hydrogen bonds with the OH groups present in PP. Changes noted via elemental composition analysis given by electron dispersive spectroscopy (EDS) confirmed the sorption of MB. Biosorption occurred mainly as a pseudo-second-order kinetic reaction combined with phase III of the intraparticle diffusion model (both R2 ≥ 0.92). Through a simple and fast batch MB sorption process with many advantages compared to literature data, a maximum sorption capacity of 384.61 mg/g could be achieved. Pomegranate peel was identified as a low-cost adsorbent with excellent potential for MB removal, economically viable (0.74 $/mol), demonstrating great possibilities for industrial application. Highlights Biosorption of phenothiazine dye on novel waste material from pomegranate peel in its native form. A univariate general procedure was performed, FTIR, SEM, and EDS characterisation of biosorbents. An optimal pH value was determined to be 6, while the optimal mass was 100 mg. A maximum biosorption capacity of 384.61 mg/g could be achieved. The mechanism of adsorption is best obeyed by the Langmuir and Freundlich models. The total analysis expenses for the entire procedure were just 0.74 $/mol. GRAPHICAL ABSTRACT
Ova stranica koristi kolačiće da bi vam pružila najbolje iskustvo
Saznaj više