CCl4 causes oxidative injury, fatty degeneration, fibrosis of the liver, renal failure, and even hepatocellular and renal carcinoma. Certain substances have the potential to neutralize the harmful effects of CCl4, so it will lead to numerous beneficial effects. Melatonin (MEL) is a powerful antioxidant that regulates circadian rhythm and has beneficial effects on organism; tryptophan (TRP) is its precursor necessary for the synthesis of MEL. The aim of the current study was to determine whether MEL and TRP, have protective effects during subchronic application of CCl4 to the liver and kidneys. Results suggest that CCl4 led to decrease of total proteins, albumins, globulins, erythrocytes, hemoglobin, and hematocrit; and increase of creatinine, AST, ALT values, and leukocytes. MEL and TRP both showing protective effects on regulation of serum proteins, albumins, globulins, A/G, AST, ALT, and creatinine levels. TRP had been shown to have potential in regulation of disbalanced hematological parameters caused by CCl4. TRP had beneficial effects on hepatocyte morphology in term of beaded chromatin and preserved cell morphology. Overall, oral supplementation of TRP had better protective effects on liver/kidneys compared to MEL.
Chromium (Cr) toxicity, even at low concentrations, poses a significant health threat to various environmental species. Cr is found in the environment in two oxidation states that differ in their bioavailability and toxicity. While Cr(III) is essential for glucose metabolism, the oxyanion chromate Cr(VI) is mostly of anthropogenic origin, toxic, and carcinogenic. The sources of Cr in the environment are multiple, including geochemical processes, disposal of industrial waste, and industrial wastewater. Cr pollution may consequently impact the health of numerous plant and animal species. Despite that, the number of published studies on Cr toxicity across environmental species remained mainly unchanged over the past two decades. The presence of Cr in the environment affects several plant physiological processes, including germination or photosynthesis, and consequently impacts growth, and lowers agricultural production and quality. Recent research has also reported the toxic effects of Cr in different aquatic and terrestrial organisms. Whereas some species showed sensitivity, others exhibited tolerance. Hence, this review discusses the understanding of the ecotoxicological effect of Cr on different plant and animal groups and serves as a concise source of consolidated information and a valuable reference for researchers and policymakers in an understanding of Cr toxicity. Future directions should focus on expanding research efforts to understand the mechanisms underlying species-specific responses to Cr pollution.
Toxicity caused by carbon tetrachloride (CCl4) can lead to serious liver injury. The aim of the study is to investigate the protective effects of oregano oil (Origanum minutiflorum extract oil) against CCl4‐induced liver injury. Two doses of oregano oil were used in the experiment: a low dose (LD; 20 mg/kg) and a high dose (HD; 60 mg/kg) during 2 weeks. CCl4 caused severe liver damage, nucleolus destruction in hepatocytes and cytogenetic changes in the nucleus. Indirectly, CCl4 causes decreased protein synthesis and significantly high creatinine and urea values. Hematological disorders have been recorded, such as decreased RBC and hemoglobin concentration, increased WBC and deformability of the erythrocyte membrane. Both doses of oregano oil had protective effects. Improved protein synthesis and high globulins level, creatinine and urea were found in both groups. Cytogenetic changes in the nucleus of hepatocytes were reduced. A high dose of oregano oil had maximal protective effects for RBC, but a very weak effect on hemoglobin synthesis. Also, WBC and lymphocyte values were low. Origanum stimulates protein synthesis and recovery of hepatocytes after liver injury, reduces the deformability of the erythrocyte membrane. High doses of oregano oil decreased WBC and lymphocytes which may lead to a weakening of the immune response. However, high doses are more effective against severe platelet aggregation than low doses, suggesting an effective treatment against thrombocytosis.
An adult female hedgehog Erinaceus roumanicus, was found in a city traffic zone with serious injuries, most likely from a vehicle impact. Rapid diagnostics, including X-ray imaging, were performed at the veterinarian clinic to rescue the animal. Due to multiple traumatic injuries and poor prognosis, the animal was anesthetized for blood sampling and then euthanized. Polycythaemia, platelet aggregation, rare megakaryoblasts, neutrophilia, lymphocytosis, and a high red blood cell (RBC) and white blood cell (WBC) count were found in peripheral blood. Eosinophilia and the physiological phenomenon of emperipolesis were detected in the femur bone marrow, while the liver biopsy confirmed the extramedullary haematopoiesis (EMH). It has been noted that acute hypovolemic shock results in rapid changes in haematological and biochemical parameters. Given the increased vulnerability of small mammal fauna due to expanding urbanization, this finding may significantly improve care for their welfare and conservation.
In the current study, we assessed the hematological/biochemical alterations, histopathological changes in the liver, and blood cell disorders in Wistar rats exposed to a toxic concentration of carbon tetrachloride (CCl4) and the potential protective effect of a 30‐day oral extract of chokeberry (Aronia melanocarpa, AM). The concentration of AM (3.38 mg/kg) obtained by quantitative purification from AM fruit showed the highest antioxidant activity (AOA) in vitro and was used for oral ingestion. In addition to high AOA, high values of total phenols (85.334 mg/g), total phenolic acid (606.95 mg/g), total flavonids (22.10 mg/g), and total anthocyanins (11.01 mg/g) were recorded in chokeberry extract. CCl4 treatment caused serious liver injury, hepatocyte and blood cell impairment. AM extract given to rats before CCl4 application had a moderate hepatoprotective effect in comparison to after CCl4 application. White blood count and leukocytes were significantly altered by CCl4, however, the protective role of AM in leukocyte disorders was not established. A high number of microcytes, stomatocytes, anisocytes, and hemolyzed erythrocytes during CCl4 exposure was reduced by AM extract. Flower erythrocytes in the AM + CCl4 group were recorded. Supplementation with chokeberry extract without CCl4 caused hyperproteinemia and hyperalbuminemia. Although the results indicate a weak protective role for AM, it is nevertheless important for improved erythropoiesis and regulation of the development of anemia. The hepatoprotective role of AM was moderate, and the immune response was not proven. Daily consumption of chokeberry extract can improve health. However, the results of our study showed that the ingestion of AM extract at this dose with the highest AOA would have more effective effects if the supplementation were significantly increased.
Carbon tetrachloride (CCl4) is known to have hepatotoxic and nephrotoxic effects. During the two‐month CCl4 exposure of Wistar rats, propolis extract (PE) and royal jelly (RJ) were added in order to test the potential protective effect against hepato‐renal injury. Ketonuria, proteinuria, high creatinine and urea levels are the result of CCl4‐induced nephrotoxicity. Severe disorders of hematological indicators indicate anemia; high values of leukocytes indicate inflammatory condition. Cytogenetic impairments in hepatocytes, aggregation of platelets, and hypoproteinemia indicate severe liver impairment. Results suggest a more significant protective role of RJ compared to PE. Both extracts regulated proteinuria, ketonuria, hypoproteinemia and reduced platelet aggregation in the hepatic circulation. The increase in the number of erythrocytes (RBC) suggest protective effects against anemia; the decrease in the number of leukocytes can be linked to anti‐inflammatory effects. PE and RJ have a beneficial effect against hepato‐renal injury, anemia and anti‐inflammatory conditions caused by CCl4.
Ova stranica koristi kolačiće da bi vam pružila najbolje iskustvo
Saznaj više