Abstract Simultaneous adsorption of heavy metals in complex multi metal system is insufficiently explored. This research gives results of key process parameters optimization for simultaneous removal of Cd(II), Co(II), Cr(III), Cu(II), Mn(II), Ni(II) and Pb(II) from aqueous solution (batch system). New lemon peel-based biomaterial was prepared and characterized by infrared spectroscopy with Fourier transformation (FTIR), scanning electron microscopy (SEM), electron dispersive spectroscopy (EDS), while the quantification of metals was made by atomic absorption spectrometry (AAS). Simultaneous removal of seven metals ions was favorable at pH 5 with 300 mg/50 mL solid-liquid phase ratio, within 60 min at room temperature with total obtained adsorption capacity of 46.77 mg g−1. Kinetic modeling showed that pseudo-second order kinetic and Weber-Morris diffusion models best describe the adsorption mechanism of all seven heavy metals onto lemon peel.
This article reports on an investigation into the ability of SiO2–Ta2O5 as a new sorbent for simultaneous preconcentration of Cd(ii), Co(ii), Cr(iii), Cu(ii), Fe(iii), Mn(ii), Ni(ii) and Pb(ii) ions from water by the column method and the parameters involved in this process.
This study evaluates the genotoxic potential of two Ru(III) complexes with thiosemicarbazone based ligands. The complexes were tested for in vitro protective effect on chromosome aberrations in peripheral human lymphocytes using the cytokinesis block micronucleus (CBMN) assay at concentrations 1.5; 3.7 and 7.4 μg/mL. The cell culture treated with the tested complexes, at 3.7 μg/mL concentration, decreased a frequency of micronucleus for 37% and 32%, when compared with the control cell cultures. At concentration of 7.4 (1.5) μg/mL of this complexes exhibited slightly lower effect of micronucleus for 30% (35%) and 27% (29%), when compared with the control cell cultures.
Abstract A silica-based inorganic sorbent was synthesized by the thermal decomposition of ammonium heptamolybdate on silica and applied for the preconcentration and simultaneous determination of Cd, Co, Cr, Cu, Fe, Mn, Ni, and Pb in river water samples using a column system with flame atomic absorption spectrometry. Attenuated total reflection-Fourier transformation infrared spectroscopy, scanning electron microscopy, and electron dispersive spectroscopy were used for sorbent characterization. The effects of pH, sample volume, eluent type, eluent concentration, eluent volume, sample flow rate, and matrix ions (Al, Bi, Ca, Mg, and Zn) on the recovery of the metals in model solutions were investigated. The adsorption capacities (µmol g−1) of SiO2-MoO3 were 88.96 (Cd), 169.69 (Co), 153.85 (Cr), 188.88 (Cu), 179.05 (Fe), 163.81 (Mn), 136.31 (Ni), and 38.61 (Pb). The detection limits of the method were 9.09, 10.82, 10.77, 49.57, 31.64, 6.40, 8.86, 19.15 µg L−1 for Cd, Co, Cr, Cu, Fe, Mn, Ni, and Pb, respectively, with a preconcentration factor of 25. The developed method was used for the determination of the target metals in real samples and the recoveries for spiked samples were found to be from 91.2% to 102.9%.
Nema pronađenih rezultata, molimo da izmjenite uslove pretrage i pokušate ponovo!
Ova stranica koristi kolačiće da bi vam pružila najbolje iskustvo
Saznaj više