Logo

Publikacije (108)

Nazad

Abstract Granulysin is a recently discovered cytolytic protein of natural killer (NK) cells and cytotoxic T lymphocytes. Studies of healthy and immunocompromised patients with primary or recurrent varicella-zoster infections demonstrate the importance of virus-specific cellular immunity in controlling viral replication, but also some studies presented granulysin as a molecule that can play a role in chickenpox immunopathogenesis. This study investigated possible correlation between serum granulysin levels and clinical course of chickenpox. A total of 69 patients with chickenpox were included in the study. We measured the levels of granulysin and percentage count for CD4+, CD8+ and NK cells in serum for all patients and healthy controls. For detection and quantification of granulysin in sera, we performed ELISA test and flow cytometry for detection, identification and percentage measurement of T and B lymphocytes. Descriptive methods, analysis of variance and multivariate logistic regression were used for statistical data analysis. We found respective correlation between serum granulysin level and severity of clinical presentation. These findings can be a good input for further studies, since there is no relevant prognostic parameter of chickenpox in everyday clinical practice. Granulysin, as a therapeutic, also deserves to be a point of interests in the future. If we prove its potential to stop dissemination of human herpes viruses, possibilities to use it in some life-threatening forms of viral disease can be very valuable.

A. Zahirović, E. Kahrović, M. Cindrić, Sandra Kraljević Pavelić, M. Hukić, Anja Harej, E. Turkušić

Abstract Heteroleptic ruthenium(II) bioflavonoid complexes of quercetin, morin, chrysin, and 3-hydroxyflavone were prepared and their interaction with CT DNA and BSA along with antioxidant and in vitro anticancer and antimicrobial activities was investigated. The formulation and characterization of complexes were achieved through elemental and thermal analysis, mass spectrometry, 1H NMR spectroscopy along with infrared, electronic absorption, and emission spectroscopy as well as square-wave voltammetry, and magnetic and conductivity measurements. Ruthenium(II) is octahedrally coordinated in cationic complex species to two bidentate diimine ligands (2,2′-bipyridine or 1,10-phenanthroline) and one bidentate monobasic flavonoid ligand through 3,4-site of quercetin, morin, and 3-hydroxyflavone or 4,5-site of chrysin. Complexes bind CT DNA by intercalation and binding constants comparable to ethidium bromide or 10 times higher. Binding constants of complexes to BSA were several times higher compared to ibuprofen and diazepam, and suggest that the complexes have a strong affinity to BSA. Antioxidant activity tests showed that the complexes are more potent in terms of radical inhibition compared to the parent flavonoids. Cytotoxic testing revealed that the Ru(II) complex of quercetin with 2,2′-bipyridine co-ligand has good selectivity to breast adenocarcinoma, while the complex of 3-hydroxyflavone with 2,2′-bipyridine co-ligand showed strong cytotoxicity toward all tested cell lines with IC50 ∼ 1 μM. All complexes showed moderate activity toward Acinetobacter baumannii, while the Ru(II) complex of 3-hydroxyflavone with 2,2′-bipyridine showed excellent activity toward MRSA and Candida albicans.

M. Hukić, Dzenita Seljmo, Amra Ramović, Monia Avdić Ibrišimović, S. Dogan, Jasna Hukic, E. F. Bojić

Two basic questions about lysozyme activities on the selected microorganisms were investigated, namely whether lysozyme inhibits biofilm production and which concentrations of the enzyme have the ability to change the natural biofilm producing capacity of different strains of Staphylococcus aureus (methicillin sensitive and resistant), Streptococcus pyogenes, Pseudomonas aeruginosa, and Gardnerella vaginalis. The effect of lysozyme on biofilm formation capacities of 16 strains of selected microorganisms was investigated, whereby four testing replicates have been performed in vitro using the Test Tube method, and the potential of lysozyme to change biofilm forming capacities depending on its concentration, species, and strains of microorganisms is demonstrated. A lysozyme concentration of 30 μg/ml indicated to have the highest inhibiting effect on all tested microorganisms. Furthermore, G. vaginalis was the most sensitive of them all, as its biofilm formation was inhibited in the presence of as low as 2.5 μg/ml of lysozyme. At enzyme concentrations of 7.5-50 μg/ml (with the exception of 30 μg/ml) the biofilm forming capacities of P. aeruginosa were enhanced. Depending on the strain of P. aeruginosa, the total biofilm quantity was either reduced or unaffected at lysozyme concentrations of 2.5, 5, 7.5, and 30 μg/ml. In contrast, lysozyme concentrations below 15 or 20 μg/ml did not affect or increase the volume of biofilm formation, while higher concentrations (15, 20, 25 μg/ml) reduced biofilm formation by 50% (3/6) and 30 μg/ml of biofilm reduced biofilm forming capacity of S. aureus by 100% (6/6). The results of this study are a strong foundation for further research on lysozyme as a modulator of the biofilm forming capacity of different species with the potential to aid in the development of new drugs for the treatment of oral and vaginal infections.

Monia Avdić Ibrišimović, Mirza Ibrišimović, Nadira Ibrišimović Mehmedinović, M. Hukić

According to many studies today the biofilms play a crucial role in the clinical setting and are the cause of many difficult to treat and reoccuring infections. Recently their role in urinary tract infections (UTIs) is becoming very significant as they are known to cause relapses and reoccuring infections especially in patients with indwelling medical devices. Up to today many biofilm testing methodologies have been suggested, however, all of them have certain drawbacks and routine testing of the biofilm forming capacity of causative agents of infection is not conducted. In our study we developed a novel spectrophotometric assay for the evaluation of the biofilm forming capacity of causative agents of UTIs and tested it on 120 urine samples isolated from two medical centars in Mostar, Bosnia and Herzegovina. The results of the novel spectrophotometric assay were then compared to the results obtained by the tissue culture plate method which was used as a referee. Based on statistical data the sensitivity and specificity of the novel spectrophotometric assay was evaluated to be 95% which is adequate for the use in standard clinical microbiology laboratories for the determination of the biofilm forming capacity of causative agents of UTI. Keywords— Biofilms; Bacteriology; Spectrophotometry; Urine; UTI.

Objective: To investigate possible prognostic values of CD4+, CD8+ T-lymphocytes, CD4/CD8 ratio to clinical course of chickenpox in immunocompetent hosts. Materials and methods: We performed a prospective study which included 69 immunocompetent patients with chickenpox who were addmited to Clinic for infectious disease, Clinical Center University of Sarajevo, in a 18 month period. All patients were divided into two groups depending on clinical presentation on admission. Patients with mild clinical form were dedicated to „outpatient” group, and patients with moderate, severe or life-threatening clinical forms were dedicated to „hospitalized” group. Also 30 healthy volunteers are included in study as a control group. We analyzed values of CD4+, CD8+ percentage, CD4/CD8 ratio with comparison to clinical course of chickenpox. All specimens were taken in acute phase of illness. Results: Values of CD4+ percentage were significantly declined in a group of hospitalized patients, compared to group of outpatients and control group. Values of CD8+ percentage were higher in a group of hospitalized patients, while CD4/CD8 values were lower in comparison to a group of outpatients and control group. Conclusion: We found significant correlation between these parameters and clinical course of chickenpox.

Sanja Jakovac, E. F. Bojić, Monia Avdić Ibrišimović, Borka Tutiš, M. Ostojić, M. Hukić

Vancomycin-resistant enterococci are among the major causes of nosocomial infections and represent a growing problem in many European countries. Among the most common enterococcal isolates, Enterococcus faecium is considered to be the reservoir of VanA and VanB-mediated resistance to glycopeptides. Enterococci with VanA-mediated resistance can transfer resistance genes to other enterococci and gram-positive bacteria. Hence, monitoring and surveillance of vancomycin-resistant enterococci (VREs) are crucial for the prevention of the spread of glycopeptide resistance. No reports have yet been published that document the resistance rates and typization of VREs in the region of Bosnia and Herzegovina as well as Croatia. In this study, 64 clinical enterococcal strains that were isolated in clinical centers, Mostar, Sarajevo, and Zagreb, were studied and findings regarding characteristics of vancomycin-resistant strains found in the West Balkan region are reported for the first time. All of the strains were identified using conventional phenotypic methods, and the resistance to glycopeptides was determined using the disk diffusion method, Vitek 2, and genotypic Enterococcus assay. The results of genotyping showed that 40 strains were identified as VREs (30% Enterococcus faecalis and 70% E. faecium), while the sensitivity of the phenotypic methods was 87.5%. Furthermore, VanA and VanB resistance types were found in Bosnia and Herzegovina and Croatia, with slightly higher prevalence of the latter (72.5%) over the former (27.5%).

Monia Avdić Ibrišimović, G. Karli, Hasan Emin Balkaya, Mirza Ibrišimović, M. Hukić

Tularemia is a vector-borne zoonosis with a complex epidemiology caused by Francisella tularensis. F. tularensis is a non-motile, obligatory aerobic, facultative intracellular Gram-negative coccobacillus. The bacterium has a broad host range, i.e. mammals, birds and invertebrates. Two types (A, B) and four subspecies (F. tularensis subsp. tularensis (type A), F. tularensis subsp. holarctica (type B), F. tularensis subsp. mediasiatica and F. tularensis subsp. novicida.) are known today. Types A and B are of importance as they cause disease in humans and animals. Type A is present almost exclusively in North America and type B is found all over the Northern hemisphere. F. tularensis is considered to be a class A biological warfare agent, it is notoriously difficult to recognize infections in non-endemic regions and was produced as a weaponized agent by several countries in the 1960ties and 70ties. Humans can acquire tularemia by inhaling dust or aerosols contaminated with F. tularensis bacteria, this type of exposure can result in pneumonic tularemia, one of the most severe forms of the disease. especially farming involving machines that disperse remains of infected animals or carcasses. Rarely, water can become tularemia contaminated through contact with infected animals. Humans who drink contaminated and untreated water may contract oropharyngeal tularemia. The tularemia outbreak in B&H in 1995 showed an unusual number of oropharyngeal cases. As all aspects of this particular tularemia epidemic were not thoroughly investigated and the possible intentional use of agents of biological warfare remained a possibility, we reviewed all available data in order to assess whether the outbreak was natural. Correspondence to: Mirsada Hukić, Institute for Biomedical Diagnostic and Research Nalaz, Sarajevo Bosnia and Herzegovina, Tel: +387-33-651 371; E-mail: mirsadahukic@yahoo.com Received: May 23, 2017; Accepted: June 20, 2017; Published: June 22, 2017 Introduction Tularemia is a vector-borne zoonosis with a complex epidemiology caused by Francisella tularensis. F. tularensis is a non-motile, obligatory aerobic, facultative intracellular Gram-negative coccobacillus. The bacterium has a broad host range, i.e. mammals, birds and invertebrates. Four subspecies are known today; F. tularensis subsp. tularensis (type A), F. tularensis subsp. holarctica (type B), F. tularensis subsp. mediasiatica and F. tularensis subsp. novicida. Types A and B are of importance as they cause disease in humans and animals. Type A is present almost exclusively in North America and type B is found all over the Northern hemisphere [1]. Infections due to tick and deer fly bites usually take the form of ulceroglandular or glandular tularemia. F. tularensis bacteria can also be transmitted to humans via the skin when handling infected animal tissue. This can occur when hunting or skinning infected rodents like rabbits, muskrats and other rodents. Many animals have also been known to become infected and clinically ill from tularemia. Domestic cats are very susceptible and can transmit the bacteria to their owners. Therefore, care should always be taken when handling sick or dead animals. Infection due to handling animals can result in glandular, ulceroglandular and oculoglandular tularemia. Eating of under-cooked meat of infected animal’s tularemia can also result in oropharyngeal tularemia [2]. Humans can acquire tularemia by inhaling dust or aerosols contaminated with F. tularensis bacteria, this type of exposure can result in pneumonic tularemia, one of the most severe forms of the disease. especially farming involving machines that disperse remains of infected animals or carcasses. Rarely, water can become tularemia contaminated through contact with infected animals. Humans who drink contaminated and untreated water may contract oropharyngeal tularemia [3]. Transmission from person to person has so far not been reported. Inhalational tularemia following intentional release of a virulent strain of F. tularensis would have the greatest adverse human Hukić M (2017) Recognizing the possibility of bioterrorism in the face of emerging and reemerging zoonotic pathogens in Bosnia and Herzegovina during the war (1992-1995) Volume 1(3): 2-7 Virol Res Rev, 2017 doi: 10.15761/VRR.1000113 consequence because of its very high infectivity if delivered as an aerosol. It has been estimated that an aerosol dispersal of 50 kg of virulent F. tularensis over a metropolitan area with 5 million inhabitants would result in 250 000 incapacitating casualties, including 19,000 deaths. Outbreaks of pneumonic tularemia, particularly in low incidence areas, should prompt consideration of bioterrorism. F. tularensis has long been considered a potential biological weapon. It was one of the agents studied the Japanese germ warfare research units in Manchuria, China between 1932 and 1945; it was also considered for military purposes in the West [4]. An outbreak of tularemia reported in Soviet and German soldiers during the second world war may have been the result of intentional release [5]. F. tularensis has been studied, weaponized and stockpiled by several countries, including Japan, the USSR and the US [4]. Pathogenesis Francisella tularensis can infect humans through the skin, mucous membranes, gastrointestinal tract, and lungs. The major target organs are the lymph nodes, lungs and pleura, spleen, liver, and kidney. Bacteremia is common in the early phase of infection. The initial tissue reaction to infection is a focal, suppurative necrosis. Suppurative lesions become granulomatous, typical of other granulomatous conditions, i.e. tuberculosis or sarcoidosis. Humans with inhalational exposure also develop early in the course of illness hemorrhagic signs and inflammation of the airways which usually evolves to bronchopneumonia. Clinical manifestations The primary clinical forms of tularemia vary in severity and presentation according to virulence of the infecting organism, the dose, and way of administration. Primary disease presentations can be glandular, ulceroglandular, oculoglandular, oropharyngeal, pneumonic, typhoidal, and septic forms. The onset of tularemia is usually abrupt, with fever (38°C-40°C), headache, chills and rigors, generalized body aches (lower back pain) and sore throat. A dry or slightly productive cough frequently occurs with or without signs of pneumonia. Nausea, vomiting, and diarrhea sometimes occur. Sweats, fever and chills, malaise, progressive weakness and weight loss characterize the continuing illness. In untreated tularemia, symptoms often persist for several weeks or months. Any form of tularemia may be complicated by hematogenous spread, resulting in secondary pleura-pneumonia, sepsis, and meningitis. Prior to the administration of antibiotics, the overall mortality with the more severe type A strains is of 5% to 15%, and in the case of untreated pneumonic and severe systemic forms fatality rates as high as 30% to 60% were reported. Type B infections are in contrast rarely fatal. Ulceroglandular tularemia, after handling a contaminated carcass or due to an infective arthropod bite, a local cutaneous papule appears at the inoculation site together with the onset of generalized symptoms, becomes pustular, and ulcerates within a few days. The ulcer is tender may show an eschar. Antibiotic treatment does not prevent the affected nodes from becoming fluctuant and rupture. Oculoglandular tularemia, which follows direct contamination of the eye, ulceration occurs on the conjunctiva, accompanied by pronounced chemosis, vasculitis, and regional lymphadenitis. Glandular tularemia is characterized by lymphadenopathy without an ulcer. Oropharyngeal tularemia is acquired by drinking contaminated water, ingesting contaminated food, or by inhaling contaminated droplets or aerosols. Affected persons may develop stomatitis but more commonly develop exudative pharyngitis or tonsillitis, sometimes with ulceration. Tularemia pneumonia is the direct result of inhaling contaminated aerosols. Inhalational exposures commonly result in an initial clinical picture of systemic illness without prominent signs of respiratory disease. The earliest pulmonary radiographic findings of inhalational tularemia may be peribronchial infiltrates, typically advancing to bronchopneumonia in one or more lobes. Pulmonary infection can sometimes rapidly progress to severe pneumonia, respiratory failure, and death. Lung abscesses occur infrequently. Typhoidal tularemia is used to describe systemic illness when the site of inoculation or the localization of infection is unclear. Tularemia sepsis is severe and potentially fatal. As in the case of typhoidal tularemia, fever, abdominal pain, diarrhea, and vomiting may be prominent early in the course of illness. The patient typically appears toxic and may develop confusion and coma. Unless treated promptly, septic shock and other complications of systemic inflammatory response syndrome may develop with hemorrhagic signs, acute respiratory distress syndrome and organ failure [4]. The war in Bosnia and Herzegovina (B&H) (1992-1995) As in all conflicts, the inhabitants of Bosnia and Herzegovina were under extreme pressure during the war that took place 1992-1995. Due to the nature of the conflict that sometimes involved hostilities amongst neighbors, there was minimal respect for human rights and civilians, children and old people as well as soldiers suffered the consequences. In particular the weakest individuals, namely women and children suffered the most. Horrific ethnic cleansing campaigns between 1992 and the end of 1995 killed thousands and violently displaced more than two million people in much of B&H. International intervention into the Bosnian conflict led finally to a peace agreement in late 1995 (the Dayton Accords). The Dayton agreement finally ended the war in B&H. In 1995, the conflict between multiple factions was ag

Aydın Çöl, A. Dedeić-Ljubović, I. Salimović-Bešić, M. Hukić

Acinetobacter calcoaceticus-A. baumannii complex (ACB complex) is a nosocomial pathogen. Due to its high ability to develop antibiotic resistance, it has become a problematic challenge in the modern healthcare system. The molecular and genetic mechanisms of gaining multidrug resistance in ACB complex are well known. This study focuses on providing an overview of the antibiotic resistance profiles, genetic similarities and resistotypes, and general characteristics of carbapenem-resistant ACB complex (CRACB) in Bosnia and Herzegovina (BiH). In light of the data collected in this study, together with the already known information concerning antibiotic resistance of ACB complex, we intend to further elucidate the antibiotic therapy for CRACB strain resistotypes in BiH.

D. Granov, A. Ljubović, S. Zec, Nermir Granov, M. Hukić

Aim: The aim of this study was to examine the impact of antibiotic consumption on development of antimicrobial resistance in Acinetobacter baumannii. Material and Methods: The study was conducted in University Clinical Center of Sarajevo. In our retrospective study Acinetobacter baumannii isolated in period from July 1st 2009 to December 31st 2012. Isolates were detected from different clinical samples including urine, wound swab, blood, bronchial aspirate and other samples which were collected from patients situated on various hospital wards. Clinical isolates belonged to one per patient in a given period of time. Results: Antimicrobial resistance was interpreted according to CLSI breakpoints. Consumption of antibiotics was analyzed according to recommendations of the ESAC-Net and current Acinetobacter baumannii classification. Pearson’s correlation showed a positive correlation between gentamicin consumption and emerging of resistance (p = 0.023). Conclusion: Increase in the antimicrobial use was followed with an increase in resistance of Acinetobacter baumannii isolates. Monitoring of antibiotic resistance and consumption is of a great importance in order to reduce the emergence and spread of antimicrobial resistant organisms in the health care settings.

Nema pronađenih rezultata, molimo da izmjenite uslove pretrage i pokušate ponovo!

Pretplatite se na novosti o BH Akademskom Imeniku

Ova stranica koristi kolačiće da bi vam pružila najbolje iskustvo

Saznaj više