Computed tomography (CT) is a diagnostic imaging process that uses ionising radiation to obtain information about the interior anatomic structure of the human body. Considering that the medical use of ionising radiation implies exposing patients to radiation that may lead to unwanted stochastic effects and that those effects are less probable at lower doses, optimising imaging protocols is of great importance. In this paper, we used an assembled 3D-printed infant head phantom and matched its image quality parameters with those obtained for a commercially available adult head phantom using the imaging protocol dedicated for adult patients. In accordance with the results, an optimised scanning protocol was designed which resulted in dose reductions for paediatric patients while keeping image quality at an adequate level.
For more than two years, coronavirus disease 19 (COVID-19) has represented a threat to global health and lifestyles. Computed tomography (CT) imaging provides useful information in patients with COVID-19 pneumonia. However, this diagnostic modality is based on exposure to ionizing radiation, which is associated with an increased risk of radiation-induced cancer. In this study, we evaluated the common dose descriptors, CTDIvol and DLP, for 1180 adult patients. This data was used to estimate the effective dose, and risk of exposure-induced death (REID). Awareness of the extensive use of CT as a diagnostic tool in the management of COVID-19 during the pandemic is vital for the evaluation of radiation exposure parameters, dose reduction methods development and radiation protection.
Using our theory which is based on the strong-field approximation we analyze high-order above-threshold ionization and high-order harmonic generation processes for the case of the homonuclear diatomic molecules exposed to an orthogonally polarized two-color (OTC) laser field. The OTC field represents a superposition of two linearly polarized fields with mutually orthogonal polarizations and different frequencies. We analyze the photoelectron energy spectra and the harmonic ellipticity as a function of the ratio of the intensities of the OTC laser-field components and the relative phase. Some combinations of the values of these parameters lead to the high-energy electrons, while the harmonic ellipticity depends strongly on the ratio of the intensities of the laser-field components. It is possible to find the value of this ratio for which the ellipticity of the emitted harmonics is large. The signes of ellipticity are opposite for the molecular orientations which are connected through the reflection with respect to the axis along the first OTC field component. This symmetry is explained using the expression which relates the T-matrix element and the harmonic ellipticity.
Nema pronađenih rezultata, molimo da izmjenite uslove pretrage i pokušate ponovo!
Ova stranica koristi kolačiće da bi vam pružila najbolje iskustvo
Saznaj više