Although COVID-19 is not a pandemic anymore, the virus frequently mutates, resulting in new strains and presenting global public health challenges. The lack of oral antiviral drugs makes it difficult to treat him, which makes the creation of broadly acting antivirals necessary to fight current and next epidemics of viruses. Using the molecular docking approach, 118 compounds derived from marine organisms and 92 previously synthesized compounds were screened to assess their binding affinity for the main protease and papain-like protease enzymes of SARS-CoV-2. The best candidates from the xanthene, benzoxazole, and coumarin classes were identified. Marine-derived compounds showed slightly better potential as enzyme inhibitors, though the binding affinities of synthesized compounds were similar, with the best candidates displaying affinity values between 0.2 and 0.4 mM. Xanthenes, among both marine origin and synthesized compounds, emerged as the most promising scaffolds for further research as inhibitors. The papain-like protease was found to be more druggable than the main protease. Additionally, all top candidates met the criteria for various drug-likeness properties, indicating good oral bioavailability and low risk of adverse effects. This research provides valuable insights into the comparative affinities of marine origin and synthesized compounds from the xanthene, coumarin, and benzoxazole classes, highlighting promising candidates for further in vitro and in vivo studies.
Paediatric and geriatric populations, as well as other special patient populations with swallowing problems, require patient-tai-lored dosage forms. One promising dosage form for these specific populations is orodispersible films. When preparing orodispersible films using sodium carboxymethyl cellulose as the film-forming polymer and glycerine as the plasticizer, it is essential to determine the optimal mixing time and mixing speed of the casting solution to achieve the desired transparency/opacity of the orodispersible films. In this paper, the primary focus is on mixing time and mixing speed, and determining how these two parameters can influence optical characteristics. All tested parameters are supported by FTIR anal - ysis. The obtained results show that either a mixing speed of 7000 rpm on a high-shear mixer for 15 min or a mixing speed of 9000 rpm for 5 min can produce films with optimal optical characteristics.
Although solid oral dosage forms present majority of commonly prescribed drugs, some patients struggle with ingesting them (Awad et al., 2021). Amongst those, a very significant group is the pediatric population. On the other side, questions concerning dosage consistency arise when it comes to liquid oral preparations, particularly for suspensions (Gupta et al., 2021). To avoid the limitations of conventional oral dosage forms, orodispersible films (ODFs) were developed as a promising, patient-tailored therapeutic alternative. After the administration, ODFs are swallowed naturally with saliva, and there is no need for additional water (Yadav et al., 2021). Furthermore, in terms of the pediatric population, the product not only has to be easy to swallow, but it also has to be visually appealing. Therefore, a lot of attention is dedicated to the visual appearance of ODFs, including their color and transparency or opacity (Zamanian et al., 2021). One of the methods used to produce ODFs is the solvent casting of polymer solution/dispersion. The aim of our study was to determine whether high shear mixer heads have an influence on the optical characteristics and disintegration time of the obtained ODFs.
OBJECTIVE To examine the influence of vehicles on the stability of extemporaneous suspensions of proton pump inhibitors (PPIs), to single out the formulation most suitable for children, providing appropriate evidence and arguments. METHODS A review was performed of data identified from Medline, Embase, Science Direct, as well as public digital archive PubMed, including reference texts, related to the field of stability testing of extemporaneous PPI suspensions. RESULTS Fourteen selected formulations of extemporaneous suspensions are presented and discussed. Depending on the vehicle and its composition, which was analyzed and explained in detail, the suspensions had various beyond-use dates (BUDs). CONCLUSIONS Selected vehicles and the process of preparation had great influence on the stability of extemporaneous PPI suspensions. The suspension with the longest BUD has been singled out, which is especially suitable for use in newborns. Because an explanation is provided for the influence of individual vehicle components on the stability of the mentioned suspensions, this can aid not only in the selection of an adequate formulation, but also in the development of new ones, which will be suited to individual patients.
Ova stranica koristi kolačiće da bi vam pružila najbolje iskustvo
Saznaj više