Logo

Publikacije (20)

Nazad

Paediatric and geriatric populations, as well as other special patient populations with swallowing problems, require patient-tai-lored dosage forms. One promising dosage form for these specific populations is orodispersible films. When preparing orodispersible films using sodium carboxymethyl cellulose as the film-forming polymer and glycerine as the plasticizer, it is essential to determine the optimal mixing time and mixing speed of the casting solution to achieve the desired transparency/opacity of the orodispersible films. In this paper, the primary focus is on mixing time and mixing speed, and determining how these two parameters can influence optical characteristics. All tested parameters are supported by FTIR anal - ysis. The obtained results show that either a mixing speed of 7000 rpm on a high-shear mixer for 15 min or a mixing speed of 9000 rpm for 5 min can produce films with optimal optical characteristics.

Abstract Four natural sweeteners (sucrose, xylitol, fructose, and isomalt) were selected to examine the influence of their qualities and amounts on the characteristics of orodispersible films. Sodium carboxymethylcellulose (2% w/w) was utilized as the film-forming polymer and 1% w/w glycerol as a plasticizer. Films were produced through the solvent casting method, rendering them suitable for convenient application in community or hospital pharmacy settings. The physicochemical and optical properties of the films were analyzed, and Fourier-transform infrared analysis was carried out. All films exhibited acceptable disintegration time, uniformity of mass, thickness, and optical characteristics, with significant dependence (p<0.05) on both sweetener type and quantity. Disintegration time varied based on the employed method, as well as the characteristics and amount of sweetener. Additionally, all films maintained pH values within the oral cavity range, suggesting no potential irritancy upon administration. Fourier-transform infrared analysis confirmed the formation of the film and demonstrated compatibility between its components.

Although solid oral dosage forms present majority of commonly prescribed drugs, some patients struggle with ingesting them (Awad et al., 2021). Amongst those, a very significant group is the pediatric population. On the other side, questions concerning dosage consistency arise when it comes to liquid oral preparations, particularly for suspensions (Gupta et al., 2021). To avoid the limitations of conventional oral dosage forms, orodispersible films (ODFs) were developed as a promising, patient-tailored therapeutic alternative. After the administration, ODFs are swallowed naturally with saliva, and there is no need for additional water (Yadav et al., 2021). Furthermore, in terms of the pediatric population, the product not only has to be easy to swallow, but it also has to be visually appealing. Therefore, a lot of attention is dedicated to the visual appearance of ODFs, including their color and transparency or opacity (Zamanian et al., 2021). One of the methods used to produce ODFs is the solvent casting of polymer solution/dispersion. The aim of our study was to determine whether high shear mixer heads have an influence on the optical characteristics and disintegration time of the obtained ODFs.

OBJECTIVE To examine the influence of vehicles on the stability of extemporaneous suspensions of proton pump inhibitors (PPIs), to single out the formulation most suitable for children, providing appropriate evidence and arguments. METHODS A review was performed of data identified from Medline, Embase, Science Direct, as well as public digital archive PubMed, including reference texts, related to the field of stability testing of extemporaneous PPI suspensions. RESULTS Fourteen selected formulations of extemporaneous suspensions are presented and discussed. Depending on the vehicle and its composition, which was analyzed and explained in detail, the suspensions had various beyond-use dates (BUDs). CONCLUSIONS Selected vehicles and the process of preparation had great influence on the stability of extemporaneous PPI suspensions. The suspension with the longest BUD has been singled out, which is especially suitable for use in newborns. Because an explanation is provided for the influence of individual vehicle components on the stability of the mentioned suspensions, this can aid not only in the selection of an adequate formulation, but also in the development of new ones, which will be suited to individual patients.

Dimenhydrinate (DMH) is used for the prevention and treatment of nausea, vomiting, dizziness and vertigo associated with motion sickness in a dose of 50 mg 1. It’s made of two drugs in a form of salt, diphenhydramine and 8-chlorotheophylline which synergically decrease motion caused neural excitation 2. DMH is classified as a slightly soluble drug and it belongs to class II of BCS classification as a drug with low solubility and high permeability 3. Cyclodextrins (CDs) are cyclic oligosaccharides formed by α-1,4-linked glucose units with a hydrophilic outer surface and a lipophilic central cavity. Formation of inclusion complex by incorporating a drug in the central CD cavity provides improvement of physicochemical properties without molecular modifications. Solubility and dissolution rate of poorly water-soluble drugs can be increased 4. Aqueous solubility of natural CDs is limited due to their tendency to form H-bonded associations. However, due to multiple reactive hydroxyl groups, their functionality can be greatly increased by chemical modification 5. CDs’ substituted derivates can overcome poor solubility issues and enhance bioavailability. Hydroxypropylβ-CD (HP-β-CD) has good inclusion ability, high water solubility and it’s safe for intravenous and oral administration 6. Stability constant (Ks) and complexation efficacy (CE) are important for assessing the binding characteristics of the drug and CD. They can be determined by the phase solubility studies where the change of the drug solubility is corresponding to the concentration of CD 7. Linear (AL) type of the curve implies that one molecule of the drug forms inclusion complex with one molecule of the CD. Apparent stability constant K1:1 can be calculated from the following equation:

Microneedles (MNs) represent the concept of attractive, minimally invasive puncture devices of micron-sized dimensions that penetrate the skin painlessly and thus facilitate the transdermal administration of a wide range of active substances. MNs have been manufactured by a variety of production technologies, from a range of materials, but most of these manufacturing methods are time-consuming and expensive for screening new designs and making any modifications. Additive manufacturing (AM) has become one of the most revolutionary tools in the pharmaceutical field, with its unique ability to manufacture personalized dosage forms and patient-specific medical devices such as MNs. This review aims to summarize various 3D printing technologies that can produce MNs from digital models in a single step, including a survey on their benefits and drawbacks. In addition, this paper highlights current research in the field of 3D printed MN-assisted transdermal drug delivery systems and analyzes parameters affecting the mechanical properties of 3D printed MNs. The current regulatory framework associated with 3D printed MNs as well as different methods for the analysis and evaluation of 3D printed MN properties are outlined.

Microneedles (MNs) have been manufactured using a variety of methods from a range of materials, but most of them are expensive and time-consuming for screening new designs and making any modifications. Therefore, stereolithography (SLA) has emerged as a promising approach for MN fabrication due to its numerous advantages, including simplicity, low cost, and the ability to manufacture complex geometrical products at any time, including modifications to the original designs. This work aimed to print MNs using SLA technology and investigate the effects of post-printing curing conditions on the mechanical properties of 3D-printed MNs. Solid MNs were designed using CAD software and printed with grey resin (Formlabs, UK) using Form 3 printer (Formlabs, UK). MNs dimensions were 1.2 × 0.4 × 0.05 mm, arranged in 6 rows and 6 columns on a 10 × 10 mm baseplate. MNs were then immersed in an isopropyl alcohol bath to remove unpolymerized resin residues and cured in a UV-A heated chamber (Formlabs, UK). In total, nine samples were taken for each combination of curing temperature (35°C, 50°C, and 70°C) and curing time (5 min, 20 min, and 60 min). Fracture tests were conducted using a hardness apparatus TB24 (Erweka, Germany). MNs were placed on the moving probe of the machine and compressed until fracture. The optimization of the SLA process parameters for improving the strength of MNs was performed using the Taguchi method. The design of experiments was carried out based on the Taguchi L9 orthogonal array. Experimental results showed that the curing temperature has a significant influence on MN strength improvements. Improvement of the MN strength can be achieved by increasing the curing temperature and curing time.

Although homeostasis is a commonly accepted concept, there is incontrovertible evidence that biological processes and functions are variable and that variability occurs in cycles. In order to explain and understand dysregulation, which has not been embraced by homeostatic principles, the allostatic model has emerged as the first serious challenge to homeostasis, going beyond its homeostatic roots. Circadian rhythm is the predominant variation in the body, and it is a pattern according to which many physiological and pathological events occur. As there is strong experimental and clinical evidence that blood pressure fluctuations undergo circadian rhythm, there is equally strong evidence that targeted time therapy for hypertension provides a better outcome of the disease. The research has gone even further throughout the development and approval process for the use of pulsatile drug release systems, which can be considered as an option for an even more convenient dosage regimen of the medicines needed.

Since glaucoma is a serious health problem, numerous therapeutics are being developed to reduce Intraocular Pressure (IOP) as the only modifiable factor of all glaucoma symptoms. IOP-lowering agents are divided into six groups, each of which has a specific mechanism of action and side effects, which are the focus of this article and are explained in detail. All the mentioned agents are formulated as eye drops. However, as conventional topical eye drops have significant disadvantages, of which poor bioavailability and patient noncompliance are the main, novel approaches to designing their drug delivery systems were used and briefly presented in this review. Review Article Rahić et al.; OR, 14(2): 17-33, 2021; Article no.OR.66197 18 Graphical Abstract

Nema pronađenih rezultata, molimo da izmjenite uslove pretrage i pokušate ponovo!

Pretplatite se na novosti o BH Akademskom Imeniku

Ova stranica koristi kolačiće da bi vam pružila najbolje iskustvo

Saznaj više