Logo

Publikacije (25)

Nazad
B. Golli, H. Osmanovic, S. Širca

The mechanism for the formation of the Λ( 1405 ) resonance is studied in a chiral quark model that includes quark-meson as well as contact (four point) interactions. The negative-parity S -wave scattering amplitudes for strangeness − 1 and 1 are calculated within a unified coupled-channel framework that includes the K N , ¯ K N , πΣ , ηΛ , K Ξ , πΛ , and ηΣ channels and possible genuine three-quark bare singlet and octet states corresponding to 12 − resonances. It is found that in order to reproduce the scattering amplitudes in the S 01 partial wave it is important to include the pertinent three-quark octet states as well as the singlet state, while the inclusion of the contact term is not mandatory. The Laurent-Pietarinen expansion is used to determine the S -matrix poles. Following their evolution as a function of increasing interaction strength, the mass of the singlet state is strongly reduced due to the attractive self-energy in the πΣ and ¯ K N channels; when it drops below the K N threshold, the state acquires a dominant ¯ K N component which can be identified with a molecular state. The attraction between the kaon and

Klf Collaboration Moskov Amaryan, M. Bashkanov, S. Dobbs, J. Ritman, J. Stevens, I. Strakovsky, S. Adhikari, A. Asaturyan et al.

We propose to create a secondary beam of neutral kaons in Hall D at Jefferson Lab to be used with the GlueX experimental setup for strange hadron spectroscopy. The superior CEBAF electron beam will enable a flux on the order of $1\times 10^4~K_L/sec$, which exceeds the flux of that previously attained at SLAC by three orders of magnitude. The use of a deuteron target will provide first measurements ever with neutral kaons on neutrons. The experiment will measure both differential cross sections and self-analyzed polarizations of the produced $\Lambda$, $\Sigma$, $\Xi$, and $\Omega$ hyperons using the GlueX detector at the Jefferson Lab Hall D. The measurements will span CM $\cos\theta$ from $-0.95$ to 0.95 in the range W = 1490 MeV to 2500 MeV. The new data will significantly constrain the partial wave analyses and reduce model-dependent uncertainties in the extraction of the properties and pole positions of the strange hyperon resonances, and establish the orbitally excited multiplets in the spectra of the $\Xi$ and $\Omega$ hyperons. Comparison with the corresponding multiplets in the spectra of the charm and bottom hyperons will provide insight into he accuracy of QCD-based calculations over a large range of masses. The proposed facility will have a defining impact in the strange meson sector through measurements of the final state $K\pi$ system up to 2 GeV invariant mass. This will allow the determination of pole positions and widths of all relevant $K^\ast(K\pi)$ $S$-,$P$-,$D$-,$F$-, and $G$-wave resonances, settle the question of the existence or nonexistence of scalar meson $\kappa/K_0^\ast(700)$ and improve the constrains on their pole parameters. Subsequently improving our knowledge of the low-lying scalar nonet in general.

Klf Collaboration Moskov Amaryan, M. Bashkanov, S. Dobbs, J. Ritman, J. Stevens, I. Strakovsky, S. Adhikari, A. Asaturyan et al.

We propose to create a secondary beam of neutral kaons in Hall D at Jefferson Lab to be used with the GlueX experimental setup for strange hadron spectroscopy. The superior CEBAF electron beam will enable a flux on the order of $1\times 10^4~K_L/sec$, which exceeds the flux of that previously attained at SLAC by three orders of magnitude. The use of a deuteron target will provide first measurements ever with neutral kaons on neutrons. The experiment will measure both differential cross sections and self-analyzed polarizations of the produced $\Lambda$, $\Sigma$, $\Xi$, and $\Omega$ hyperons using the GlueX detector at the Jefferson Lab Hall D. The measurements will span CM $\cos\theta$ from $-0.95$ to 0.95 in the range W = 1490 MeV to 2500 MeV. The new data will significantly constrain the partial wave analyses and reduce model-dependent uncertainties in the extraction of the properties and pole positions of the strange hyperon resonances, and establish the orbitally excited multiplets in the spectra of the $\Xi$ and $\Omega$ hyperons. Comparison with the corresponding multiplets in the spectra of the charm and bottom hyperons will provide insight into he accuracy of QCD-based calculations over a large range of masses. The proposed facility will have a defining impact in the strange meson sector through measurements of the final state $K\pi$ system up to 2 GeV invariant mass. This will allow the determination of pole positions and widths of all relevant $K^\ast(K\pi)$ $S$-,$P$-,$D$-,$F$-, and $G$-wave resonances, settle the question of the existence or nonexistence of scalar meson $\kappa/K_0^\ast(700)$ and improve the constrains on their pole parameters. Subsequently improving our knowledge of the low-lying scalar nonet in general.

J. Briscoe, M. Hadžimehmedović, A. Kudryavtsev, V. Kulikov, M. Martemianov, I. Strakovsky, A. Švarc, V. Tarasov et al.

The γn → π 0 n differential cross section evaluated for 27 energy bins span the photon-energy range 290–813 MeV ( W = 1.195 – 1.553 GeV) and the pion c.m. polar production angles, ranging from 18 ◦ to 162 ◦ , making use of model-dependent nuclear corrections to extract π 0 production data on the neutron from measurements on the deuteron target. Additionally, the total photoabsorption cross section was measured. The tagged photon beam produced by the 883-MeV electron beam of the Mainz Microtron MAMI was used for the π 0 -meson production. Our accumulation of 3 . 6 × 10 6 γn → π 0 n events allowed a detailed study of the reaction dynamics. Our data are in reasonable agreement with previous A2 measurements and extend them to lower energies. The data are compared to predictions of previous SAID, MAID, and BnGa partial-wave analyses and to the latest SAID fit MA19 that included our data. Selected photon decay amplitudes N ∗ → γn at the resonance poles are determined for the first time.

W. Briscoe, M. Hadzimehmedovi, A. Kudryavtsev, V. Kulikov, M. Martemianov, I. Strakovsky, A. Švarc, V. E. Tarasov et al.

The γn → π 0 n differential cross section evaluated for 27 energy bins span the photon-energy range 290–813 MeV ( W = 1.195 – 1.553 GeV) and the pion c.m. polar production angles, ranging from 18 ◦ to 162 ◦ , making use of model-dependent nuclear corrections to extract π 0 production data on the neutron from measurements on the deuteron target. Additionally, the total photoabsorption cross section was measured. The tagged photon beam produced by the 883-MeV electron beam of the Mainz Microtron MAMI was used for the π 0 -meson production. Our accumulation of 3 . 6 × 10 6 γn → π 0 n events allowed a detailed study of the reaction dynamics. Our data are in reasonable agreement with previous A2 measurements and extend them to lower energies. The data are compared to predictions of previous SAID, MAID, and BnGa partial-wave analyses and to the latest SAID fit MA19 that included our data. Selected photon decay amplitudes N ∗ → γn at the resonance poles are determined for the first time.

W. Briscoe, M. Hadžimehmedović, A. Kudryavtsev, V. Kulikov, M. Martemianov, I. Strakovsky, A. Švarc, V. E. Tarasov et al.

The γ n → π 0 n differential cross section evaluated for 27 energy bins span the photon-energy range 290–813 MeV ( W = 1.195 –1.553 GeV) and the pion c.m. polar production angles, ranging from 18 ∘ to 162 ∘ , making use of model-dependent nuclear corrections to extract π 0 production data on the neutron from measurements on the deuteron target. Additionally, the total photoabsorption cross section was measured. The tagged photon beam produced by the 883 MeV electron beam of the Mainz Microtron MAMI was used for the π 0 -meson production. Our accumulation of 3.6 × 10 6 γ n → π 0 n events allowed a detailed study of the reaction dynamics. Our data are in reasonable agreement with previous A2 measurements and extend them to lower energies. The data are compared with predictions of previous said, maid, and BnGa partial-wave analyses and to the latest said fit MA19 that included our data. Selected photon-decay amplitudes N ∗ → γ n at the resonance poles are determined for the first time.

B. Golli, H. Osmanovic, S. Širca, A. Švarc

In view of the recent results of lattice QCD simulation in the P11 partial wave that has found no clear signal for the three-quark Roper state we investigate a different mechanism for the formation of the Roper resonance in a coupled channel approach including the πN, πDelta, and σN channels. We fix the pion-baryon vertices in the underlying quark model while the s-wave sigma-baryon interaction is introduced phenomenologically with the coupling strength, the mass, and the width of the σ meson as free parameters. The Laurent- Pietarinen expansion is used to extract the information about the S-matrix pole. The Lippmann-Schwinger equation for the K matrix with a separable kernel is solved to all orders. For sufficiently strong σNN coupling the kernel becomes singular and a quasibound state emerges at around 1.4 GeV, dominated by the σN component and reflecting itself in a pole of the S matrix. The alternative mechanism involving a (1s)22s quark resonant state is added to the model and the interplay of the dynamically generated state and the three-quark resonant state is studied. It turns out that for the mass of the three-quark resonant state above 1.6 GeV the mass of the resonance is determined solely by the dynamically generated state, nonetheless, the inclusion of the three- quark resonant state is imperative to reproduce the experimental width and the modulus of the resonance pole.

A. Anisovich, V. Burkert, M. Hadžimehmedović, D. Ireland, E. Klempt, V. Nikonov, R. Omerović, H. Osmanovic et al.

Data on the reaction γp→K^{+}Λ from the CLAS experiments are used to derive the leading multipoles, E_{0+}, M_{1-}, E_{1+}, and M_{1+}, from the production threshold to 2180 MeV in 24 slices of the invariant mass. The four multipoles are determined without any constraints. The multipoles are fitted using a multichannel L+P model that allows us to search for singularities and to extract the positions of poles on the complex energy plane in an almost model-independent method. The multipoles are also used as additional constraints in an energy-dependent analysis of a large body of pion and photoinduced reactions within the Bonn-Gatchina partial wave analysis. The study confirms the existence of poles due to nucleon resonances with spin parity J^{P}=1/2^{-}, 1/2^{+}, and 3/2^{+} in the region at about 1.9 GeV.

S. Adhikari, G. Kalicy, P. Pauli, J. Price, T. Horn, V. Lyubovitskij, A. Ali, A. Semenov et al.

We propose to create a secondary beam of neutral kaons in Hall D at Jefferson Lab to be used with the GlueX experimental setup for strange hadron spectroscopy. A flux on the order of 3 x 10^4 KL/s will allow a broad range of measurements to be made by improving the statistics of previous data obtained on hydrogen targets by three orders of magnitude. Use of a deuteron target will provide first measurements on the neutron which is {\it terra incognita}. The experiment will measure both differential cross sections and self-analyzed polarizations of the produced {\Lambda}, {\Sigma}, {\Xi}, and {\Omega} hyperons using the GlueX detector at the Jefferson Lab Hall D. The measurements will span c.m. cos{\theta} from -0.95 to 0.95 in the c.m. range above W = 1490 MeV and up to 3500 MeV. These new GlueX data will greatly constrain partial-wave analyses and reduce model-dependent uncertainties in the extraction of strange resonance properties (including pole positions), and provide a new benchmark for comparisons with QCD-inspired models and lattice QCD calculations. The proposed facility will also have an impact in the strange meson sector by providing measurements of the final-state K{\pi} system from threshold up to 2 GeV invariant mass to establish and improve on the pole positions and widths of all K*(K{\pi}) P-wave states as well as for the S-wave scalar meson {\kappa}(800).

S. Adhikari, H. A. Ghoul, A. Ali, M. Amaryan, E. Anassontzis, A. Anisovich, A. Austregesilo, M. Baalouch et al.

We propose to create a secondary beam of neutral kaons in Hall D at Jefferson Lab to be used with the GlueX experimental setup for strange hadron spectroscopy. A flux on the order of 3×10 KL/s will allow a broad range of measurements to be made by improving the statistics of previous data obtained on hydrogen targets by three orders of magnitude. Use of a deuteron target will provide first measurements on the neutron which is terra incognita. The experiment will measure both differential cross sections and self-analyzed polarizations of the produced Λ, Σ, Ξ, and Ω hyperons using the GlueX detector at the Jefferson Lab Hall D. The measurements will span c.m. cos θ from −0.95 to 0.95 in the c.m. range above W = 1490 MeV and up to 3500 MeV. These new GlueX data will greatly constrain partial-wave analyses and reduce model-dependent uncertainties in the extraction of strange resonance properties (including pole positions), and provide a new benchmark for comparisons with QCD-inspired models and lattice QCD calculations. The proposed facility will also have an impact in the strange meson sector by providing measurements of the final-state Kπ system from threshold up to 2 GeV invariant mass to establish and improve on the pole positions and widths of all K∗(Kπ) P-wave states as well as for the S-wave scalar meson κ(800).

Nema pronađenih rezultata, molimo da izmjenite uslove pretrage i pokušate ponovo!

Pretplatite se na novosti o BH Akademskom Imeniku

Ova stranica koristi kolačiće da bi vam pružila najbolje iskustvo

Saznaj više