The mechanism for the formation of the Λ( 1405 ) resonance is studied in a chiral quark model that includes quark-meson as well as contact (four point) interactions. The negative-parity S -wave scattering amplitudes for strangeness − 1 and 1 are calculated within a unified coupled-channel framework that includes the K N , ¯ K N , πΣ , ηΛ , K Ξ , πΛ , and ηΣ channels and possible genuine three-quark bare singlet and octet states corresponding to 12 − resonances. It is found that in order to reproduce the scattering amplitudes in the S 01 partial wave it is important to include the pertinent three-quark octet states as well as the singlet state, while the inclusion of the contact term is not mandatory. The Laurent-Pietarinen expansion is used to determine the S -matrix poles. Following their evolution as a function of increasing interaction strength, the mass of the singlet state is strongly reduced due to the attractive self-energy in the πΣ and ¯ K N channels; when it drops below the K N threshold, the state acquires a dominant ¯ K N component which can be identified with a molecular state. The attraction between the kaon and
We propose to create a secondary beam of neutral kaons in Hall D at Jefferson Lab to be used with the GlueX experimental setup for strange hadron spectroscopy. The superior CEBAF electron beam will enable a flux on the order of $1\times 10^4~K_L/sec$, which exceeds the flux of that previously attained at SLAC by three orders of magnitude. The use of a deuteron target will provide first measurements ever with neutral kaons on neutrons. The experiment will measure both differential cross sections and self-analyzed polarizations of the produced $\Lambda$, $\Sigma$, $\Xi$, and $\Omega$ hyperons using the GlueX detector at the Jefferson Lab Hall D. The measurements will span CM $\cos\theta$ from $-0.95$ to 0.95 in the range W = 1490 MeV to 2500 MeV. The new data will significantly constrain the partial wave analyses and reduce model-dependent uncertainties in the extraction of the properties and pole positions of the strange hyperon resonances, and establish the orbitally excited multiplets in the spectra of the $\Xi$ and $\Omega$ hyperons. Comparison with the corresponding multiplets in the spectra of the charm and bottom hyperons will provide insight into he accuracy of QCD-based calculations over a large range of masses. The proposed facility will have a defining impact in the strange meson sector through measurements of the final state $K\pi$ system up to 2 GeV invariant mass. This will allow the determination of pole positions and widths of all relevant $K^\ast(K\pi)$ $S$-,$P$-,$D$-,$F$-, and $G$-wave resonances, settle the question of the existence or nonexistence of scalar meson $\kappa/K_0^\ast(700)$ and improve the constrains on their pole parameters. Subsequently improving our knowledge of the low-lying scalar nonet in general.
We propose to create a secondary beam of neutral kaons in Hall D at Jefferson Lab to be used with the GlueX experimental setup for strange hadron spectroscopy. The superior CEBAF electron beam will enable a flux on the order of $1\times 10^4~K_L/sec$, which exceeds the flux of that previously attained at SLAC by three orders of magnitude. The use of a deuteron target will provide first measurements ever with neutral kaons on neutrons. The experiment will measure both differential cross sections and self-analyzed polarizations of the produced $\Lambda$, $\Sigma$, $\Xi$, and $\Omega$ hyperons using the GlueX detector at the Jefferson Lab Hall D. The measurements will span CM $\cos\theta$ from $-0.95$ to 0.95 in the range W = 1490 MeV to 2500 MeV. The new data will significantly constrain the partial wave analyses and reduce model-dependent uncertainties in the extraction of the properties and pole positions of the strange hyperon resonances, and establish the orbitally excited multiplets in the spectra of the $\Xi$ and $\Omega$ hyperons. Comparison with the corresponding multiplets in the spectra of the charm and bottom hyperons will provide insight into he accuracy of QCD-based calculations over a large range of masses. The proposed facility will have a defining impact in the strange meson sector through measurements of the final state $K\pi$ system up to 2 GeV invariant mass. This will allow the determination of pole positions and widths of all relevant $K^\ast(K\pi)$ $S$-,$P$-,$D$-,$F$-, and $G$-wave resonances, settle the question of the existence or nonexistence of scalar meson $\kappa/K_0^\ast(700)$ and improve the constrains on their pole parameters. Subsequently improving our knowledge of the low-lying scalar nonet in general.
The γn → π 0 n differential cross section evaluated for 27 energy bins span the photon-energy range 290–813 MeV ( W = 1.195 – 1.553 GeV) and the pion c.m. polar production angles, ranging from 18 ◦ to 162 ◦ , making use of model-dependent nuclear corrections to extract π 0 production data on the neutron from measurements on the deuteron target. Additionally, the total photoabsorption cross section was measured. The tagged photon beam produced by the 883-MeV electron beam of the Mainz Microtron MAMI was used for the π 0 -meson production. Our accumulation of 3 . 6 × 10 6 γn → π 0 n events allowed a detailed study of the reaction dynamics. Our data are in reasonable agreement with previous A2 measurements and extend them to lower energies. The data are compared to predictions of previous SAID, MAID, and BnGa partial-wave analyses and to the latest SAID fit MA19 that included our data. Selected photon decay amplitudes N ∗ → γn at the resonance poles are determined for the first time.
The γn → π 0 n differential cross section evaluated for 27 energy bins span the photon-energy range 290–813 MeV ( W = 1.195 – 1.553 GeV) and the pion c.m. polar production angles, ranging from 18 ◦ to 162 ◦ , making use of model-dependent nuclear corrections to extract π 0 production data on the neutron from measurements on the deuteron target. Additionally, the total photoabsorption cross section was measured. The tagged photon beam produced by the 883-MeV electron beam of the Mainz Microtron MAMI was used for the π 0 -meson production. Our accumulation of 3 . 6 × 10 6 γn → π 0 n events allowed a detailed study of the reaction dynamics. Our data are in reasonable agreement with previous A2 measurements and extend them to lower energies. The data are compared to predictions of previous SAID, MAID, and BnGa partial-wave analyses and to the latest SAID fit MA19 that included our data. Selected photon decay amplitudes N ∗ → γn at the resonance poles are determined for the first time.
The γ n → π 0 n differential cross section evaluated for 27 energy bins span the photon-energy range 290–813 MeV ( W = 1.195 –1.553 GeV) and the pion c.m. polar production angles, ranging from 18 ∘ to 162 ∘ , making use of model-dependent nuclear corrections to extract π 0 production data on the neutron from measurements on the deuteron target. Additionally, the total photoabsorption cross section was measured. The tagged photon beam produced by the 883 MeV electron beam of the Mainz Microtron MAMI was used for the π 0 -meson production. Our accumulation of 3.6 × 10 6 γ n → π 0 n events allowed a detailed study of the reaction dynamics. Our data are in reasonable agreement with previous A2 measurements and extend them to lower energies. The data are compared with predictions of previous said, maid, and BnGa partial-wave analyses and to the latest said fit MA19 that included our data. Selected photon-decay amplitudes N ∗ → γ n at the resonance poles are determined for the first time.
Ova stranica koristi kolačiće da bi vam pružila najbolje iskustvo
Saznaj više