Logo
User Name

Rifat Omerović

University of Tuzla

Društvene mreže:

Institucija

Elena Omerović, R. Omerović, Hedim Osmanović

Numerical and pseudo data for pion electroproduction from four reaction channels, p(γ*, π0)p, p(γ*, π+)n, n(γ*, π−)p, and n(γ*, π0)n, from threshold up to W = 1.575 GeV are used to perform a single energy partial wave analysis. As a constraint, higher partial waves are taken from the MAID07 model and lower partial waves are fitted. It is demonstrated that truncated partial wave analysis in a full isospin can be obtained with this procedure. The results for photon virtuality Q2 = 0.5 GeV2 are presented. Electromagnetic Eℓ±, Mℓ±, and longitudinal Lℓ± multipoles are presented and discussed. In the first step, numerical data are generated, and the optimal number of lower partial waves required for a good data fit is determined. In the second step, the same procedure is applied using generated pseudo data.

Faruk Husremović, Orhan Muharemović, Edis Đedović, Alma Efendić, Jasmin Mušanović, R. Omerović, Hedim Osmanović, M. Busuladžić

A Computed Tomography Urography (CTU) scan is a medical imaging test that examines the urinary tract, including the bladder, kidneys, and ureters. It helps diagnose various urinary tract diseases with precision. However, patients undergoing CTU imaging receive a relatively high dose of radiation, which can be a concern. In our research paper, we analyzed the Computed Tomography Dose Index (CTDIvol) and Dose-Length Product (DLP) for 203 adult patients who underwent CTU at one of the most important regional centers in Bosnia and Herzegovina that sees a large number of patients. Our study included the distribution of age and sex, the number of phases within one examination, and different clinical indications. We compared our findings with the results available in the scientific literature, particularly the recently published results from 20 European countries. Furthermore, we established the local diagnostic reference levels (LDRLs) that can help set the national diagnostic reference levels (NDRLs). We believe our research is a significant step towards optimizing the protocols used in different hospitals in our country.

Klf Collaboration Moskov Amaryan, M. Bashkanov, S. Dobbs, J. Ritman, J. Stevens, I. Strakovsky, S. Adhikari, A. Asaturyan, A. Austregesilo et al.

We propose to create a secondary beam of neutral kaons in Hall D at Jefferson Lab to be used with the GlueX experimental setup for strange hadron spectroscopy. The superior CEBAF electron beam will enable a flux on the order of $1\times 10^4~K_L/sec$, which exceeds the flux of that previously attained at SLAC by three orders of magnitude. The use of a deuteron target will provide first measurements ever with neutral kaons on neutrons. The experiment will measure both differential cross sections and self-analyzed polarizations of the produced $\Lambda$, $\Sigma$, $\Xi$, and $\Omega$ hyperons using the GlueX detector at the Jefferson Lab Hall D. The measurements will span CM $\cos\theta$ from $-0.95$ to 0.95 in the range W = 1490 MeV to 2500 MeV. The new data will significantly constrain the partial wave analyses and reduce model-dependent uncertainties in the extraction of the properties and pole positions of the strange hyperon resonances, and establish the orbitally excited multiplets in the spectra of the $\Xi$ and $\Omega$ hyperons. Comparison with the corresponding multiplets in the spectra of the charm and bottom hyperons will provide insight into he accuracy of QCD-based calculations over a large range of masses. The proposed facility will have a defining impact in the strange meson sector through measurements of the final state $K\pi$ system up to 2 GeV invariant mass. This will allow the determination of pole positions and widths of all relevant $K^\ast(K\pi)$ $S$-,$P$-,$D$-,$F$-, and $G$-wave resonances, settle the question of the existence or nonexistence of scalar meson $\kappa/K_0^\ast(700)$ and improve the constrains on their pole parameters. Subsequently improving our knowledge of the low-lying scalar nonet in general.

Klf Collaboration Moskov Amaryan, M. Bashkanov, S. Dobbs, J. Ritman, J. Stevens, I. Strakovsky, S. Adhikari, A. Asaturyan, A. Austregesilo et al.

We propose to create a secondary beam of neutral kaons in Hall D at Jefferson Lab to be used with the GlueX experimental setup for strange hadron spectroscopy. The superior CEBAF electron beam will enable a flux on the order of $1\times 10^4~K_L/sec$, which exceeds the flux of that previously attained at SLAC by three orders of magnitude. The use of a deuteron target will provide first measurements ever with neutral kaons on neutrons. The experiment will measure both differential cross sections and self-analyzed polarizations of the produced $\Lambda$, $\Sigma$, $\Xi$, and $\Omega$ hyperons using the GlueX detector at the Jefferson Lab Hall D. The measurements will span CM $\cos\theta$ from $-0.95$ to 0.95 in the range W = 1490 MeV to 2500 MeV. The new data will significantly constrain the partial wave analyses and reduce model-dependent uncertainties in the extraction of the properties and pole positions of the strange hyperon resonances, and establish the orbitally excited multiplets in the spectra of the $\Xi$ and $\Omega$ hyperons. Comparison with the corresponding multiplets in the spectra of the charm and bottom hyperons will provide insight into he accuracy of QCD-based calculations over a large range of masses. The proposed facility will have a defining impact in the strange meson sector through measurements of the final state $K\pi$ system up to 2 GeV invariant mass. This will allow the determination of pole positions and widths of all relevant $K^\ast(K\pi)$ $S$-,$P$-,$D$-,$F$-, and $G$-wave resonances, settle the question of the existence or nonexistence of scalar meson $\kappa/K_0^\ast(700)$ and improve the constrains on their pole parameters. Subsequently improving our knowledge of the low-lying scalar nonet in general.

J. Briscoe, M. Hadžimehmedović, A. Kudryavtsev, V. Kulikov, M. Martemianov, I. Strakovsky, A. Švarc, V. Tarasov, R. Workman et al.

W. Briscoe, M. Hadžimehmedović, A. Kudryavtsev, V. Kulikov, M. Martemianov, I. Strakovsky, A. Švarc, V. E. Tarasov, R. Workman et al.

The γ n → π 0 n differential cross section evaluated for 27 energy bins span the photon-energy range 290–813 MeV ( W = 1.195 –1.553 GeV) and the pion c.m. polar production angles, ranging from 18 ∘ to 162 ∘ , making use of model-dependent nuclear corrections to extract π 0 production data on the neutron from measurements on the deuteron target. Additionally, the total photoabsorption cross section was measured. The tagged photon beam produced by the 883 MeV electron beam of the Mainz Microtron MAMI was used for the π 0 -meson production. Our accumulation of 3.6 × 10 6 γ n → π 0 n events allowed a detailed study of the reaction dynamics. Our data are in reasonable agreement with previous A2 measurements and extend them to lower energies. The data are compared with predictions of previous said, maid, and BnGa partial-wave analyses and to the latest said fit MA19 that included our data. Selected photon-decay amplitudes N ∗ → γ n at the resonance poles are determined for the first time.

L. Tiator, M. Gorchtein, V. Kashevarov, K. Nikonov, M. Ostrick, M. Hadžimehmedović, R. Omerović, H. Osmanovic, J. Stahov et al.

The isobar model EtaMAID has been updated with new and high precision data for η\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\eta$\end{document} and η\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\eta^{\prime}$\end{document} photoproduction on protons and neutrons from MAMI, ELSA, GRAAL and CLAS. The background is described in a recently developed Regge cut model, and for the resonance part the whole list of nucleon resonances has been investigated with 21 N*\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$N^{\ast}$\end{document} states contributing to η\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\eta$\end{document} photoproduction and 12 N*\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$N^{\ast}$\end{document} states contributing to η\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \eta^\prime$\end{document} photoproduction. A new approach is discussed to avoid double counting in the overlap region of Regge and resonances. A comparison is done among four newly updated partial waves analyses for observables and partial waves. Finally, the possibility of a narrow resonance near W=1900\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$W = 1900$\end{document} MeV is discussed, that would be able to explain unexpected energy and angular dependence of observables in p(γ,η)p\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ p(\gamma,\eta^{\prime})p$\end{document} near η\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\eta^{\prime}$\end{document} threshold.

L. Tiator, M. Gorchtein, V. Kashevarov, K. Nikonov, M. Ostrick, M. Hadžimehmedović, R. Omerović, H. Osmanovic, J. Stahov et al.

Abstract.The isobar model EtaMAID has been updated with new and high precision data for $\eta$η and $\eta^{\prime}$η photoproduction on protons and neutrons from MAMI, ELSA, GRAAL and CLAS. The background is described in a recently developed Regge cut model, and for the resonance part the whole list of nucleon resonances has been investigated with 21 $N^{\ast}$N* states contributing to $\eta$η photoproduction and 12 $N^{\ast}$N* states contributing to $ \eta^\prime$η photoproduction. A new approach is discussed to avoid double counting in the overlap region of Regge and resonances. A comparison is done among four newly updated partial waves analyses for observables and partial waves. Finally, the possibility of a narrow resonance near $W = 1900$W=1900 MeV is discussed, that would be able to explain unexpected energy and angular dependence of observables in $ p(\gamma,\eta^{\prime})p$p(γ,η)p near $\eta^{\prime}$η threshold.

A. Švarc, Y. Wunderlich, H. Osmanovic, M. Hadžimehmedović, R. Omerović, J. Stahov, V. Kashevarov, K. Nikonov, M. Ostrick et al.

Unconstrained partial-wave amplitudes obtained at discrete energies from fits to complete sets of eight independent observables which are required to uniquely reconstruct reaction amplitudes do not vary smoothly with energy, and are in principle non-unique. We demonstrate how this behavior can be ascribed to the continuum ambiguity. Starting from the spinless scattering case, we demonstrate how an unknown overall phase depending on energy and angle mixes the structures seen in the associated partial-wave amplitudes making the partial wave decomposition non-unique, and illustrate it on a simple toy model. We then apply these principles to pseudo-scalar meson photoproduction and show that the non-uniqueness effect can be removed through a phase rotation generating “up-to-a-phase” unique set of SE partial wave amplitudes. Extracting pole positions from partial wave amplitudes is the next step. Up to now, there was no reliable way to extract pole parameters from SE partial waves, but a new and simple single-channel method (Laurent + Pietarinen expansion) applicable for continuous and discrete data has been recently developed. It is based on applying the Laurent decomposition of partial wave amplitude, and expanding the non-resonant background into a power series of a conformal-mapping, quickly converging power series obtaining the simplest analytic function with well-defined partial wave analytic properties which fits the input. The generalization of this method to multi- channel case is also developed and presented. Unifying both methods in succession, one constructs a model independent procedure to extract pole parameters directly from experimental data without referring to any theoretical model.

...
...
...

Pretplatite se na novosti o BH Akademskom Imeniku

Ova stranica koristi kolačiće da bi vam pružila najbolje iskustvo

Saznaj više