Logo
User Name

Rifat Omerović

University of Tuzla

Društvene mreže:

Institucija

Faruk Husremović, Orhan Muharemović, Edis Đedović, Alma Efendić, Jasmin Mušanović, R. Omerović, Hedim Osmanović, Mustafa Busuladžić

A Computed Tomography Urography (CTU) scan is a medical imaging test that examines the urinary tract, including the bladder, kidneys, and ureters. It helps diagnose various urinary tract diseases with precision. However, patients undergoing CTU imaging receive a relatively high dose of radiation, which can be a concern. In our research paper, we analyzed the Computed Tomography Dose Index (CTDIvol) and Dose-Length Product (DLP) for 203 adult patients who underwent CTU at one of the most important regional centers in Bosnia and Herzegovina that sees a large number of patients. Our study included the distribution of age and sex, the number of phases within one examination, and different clinical indications. We compared our findings with the results available in the scientific literature, particularly the recently published results from 20 European countries. Furthermore, we established the local diagnostic reference levels (LDRLs) that can help set the national diagnostic reference levels (NDRLs). We believe our research is a significant step towards optimizing the protocols used in different hospitals in our country.

Klf Collaboration Moskov Amaryan, M. Bashkanov, S. Dobbs, J. Ritman, J. Stevens, I. Strakovsky, S. Adhikari, A. Asaturyan, A. Austregesilo et al.

We propose to create a secondary beam of neutral kaons in Hall D at Jefferson Lab to be used with the GlueX experimental setup for strange hadron spectroscopy. The superior CEBAF electron beam will enable a flux on the order of $1\times 10^4~K_L/sec$, which exceeds the flux of that previously attained at SLAC by three orders of magnitude. The use of a deuteron target will provide first measurements ever with neutral kaons on neutrons. The experiment will measure both differential cross sections and self-analyzed polarizations of the produced $\Lambda$, $\Sigma$, $\Xi$, and $\Omega$ hyperons using the GlueX detector at the Jefferson Lab Hall D. The measurements will span CM $\cos\theta$ from $-0.95$ to 0.95 in the range W = 1490 MeV to 2500 MeV. The new data will significantly constrain the partial wave analyses and reduce model-dependent uncertainties in the extraction of the properties and pole positions of the strange hyperon resonances, and establish the orbitally excited multiplets in the spectra of the $\Xi$ and $\Omega$ hyperons. Comparison with the corresponding multiplets in the spectra of the charm and bottom hyperons will provide insight into he accuracy of QCD-based calculations over a large range of masses. The proposed facility will have a defining impact in the strange meson sector through measurements of the final state $K\pi$ system up to 2 GeV invariant mass. This will allow the determination of pole positions and widths of all relevant $K^\ast(K\pi)$ $S$-,$P$-,$D$-,$F$-, and $G$-wave resonances, settle the question of the existence or nonexistence of scalar meson $\kappa/K_0^\ast(700)$ and improve the constrains on their pole parameters. Subsequently improving our knowledge of the low-lying scalar nonet in general.

Klf Collaboration Moskov Amaryan, M. Bashkanov, S. Dobbs, J. Ritman, J. Stevens, I. Strakovsky, S. Adhikari, A. Asaturyan, A. Austregesilo et al.

We propose to create a secondary beam of neutral kaons in Hall D at Jefferson Lab to be used with the GlueX experimental setup for strange hadron spectroscopy. The superior CEBAF electron beam will enable a flux on the order of $1\times 10^4~K_L/sec$, which exceeds the flux of that previously attained at SLAC by three orders of magnitude. The use of a deuteron target will provide first measurements ever with neutral kaons on neutrons. The experiment will measure both differential cross sections and self-analyzed polarizations of the produced $\Lambda$, $\Sigma$, $\Xi$, and $\Omega$ hyperons using the GlueX detector at the Jefferson Lab Hall D. The measurements will span CM $\cos\theta$ from $-0.95$ to 0.95 in the range W = 1490 MeV to 2500 MeV. The new data will significantly constrain the partial wave analyses and reduce model-dependent uncertainties in the extraction of the properties and pole positions of the strange hyperon resonances, and establish the orbitally excited multiplets in the spectra of the $\Xi$ and $\Omega$ hyperons. Comparison with the corresponding multiplets in the spectra of the charm and bottom hyperons will provide insight into he accuracy of QCD-based calculations over a large range of masses. The proposed facility will have a defining impact in the strange meson sector through measurements of the final state $K\pi$ system up to 2 GeV invariant mass. This will allow the determination of pole positions and widths of all relevant $K^\ast(K\pi)$ $S$-,$P$-,$D$-,$F$-, and $G$-wave resonances, settle the question of the existence or nonexistence of scalar meson $\kappa/K_0^\ast(700)$ and improve the constrains on their pole parameters. Subsequently improving our knowledge of the low-lying scalar nonet in general.

J. Briscoe, M. Hadžimehmedović, A. Kudryavtsev, V. Kulikov, M. Martemianov, I. Strakovsky, A. Švarc, V. Tarasov, R. Workman et al.

The γn → π 0 n differential cross section evaluated for 27 energy bins span the photon-energy range 290–813 MeV ( W = 1.195 – 1.553 GeV) and the pion c.m. polar production angles, ranging from 18 ◦ to 162 ◦ , making use of model-dependent nuclear corrections to extract π 0 production data on the neutron from measurements on the deuteron target. Additionally, the total photoabsorption cross section was measured. The tagged photon beam produced by the 883-MeV electron beam of the Mainz Microtron MAMI was used for the π 0 -meson production. Our accumulation of 3 . 6 × 10 6 γn → π 0 n events allowed a detailed study of the reaction dynamics. Our data are in reasonable agreement with previous A2 measurements and extend them to lower energies. The data are compared to predictions of previous SAID, MAID, and BnGa partial-wave analyses and to the latest SAID fit MA19 that included our data. Selected photon decay amplitudes N ∗ → γn at the resonance poles are determined for the first time.

W. Briscoe, M. Hadžimehmedović, A. Kudryavtsev, V. Kulikov, M. Martemianov, I. Strakovsky, A. Švarc, V. E. Tarasov, R. Workman et al.

The γ n → π 0 n differential cross section evaluated for 27 energy bins span the photon-energy range 290–813 MeV ( W = 1.195 –1.553 GeV) and the pion c.m. polar production angles, ranging from 18 ∘ to 162 ∘ , making use of model-dependent nuclear corrections to extract π 0 production data on the neutron from measurements on the deuteron target. Additionally, the total photoabsorption cross section was measured. The tagged photon beam produced by the 883 MeV electron beam of the Mainz Microtron MAMI was used for the π 0 -meson production. Our accumulation of 3.6 × 10 6 γ n → π 0 n events allowed a detailed study of the reaction dynamics. Our data are in reasonable agreement with previous A2 measurements and extend them to lower energies. The data are compared with predictions of previous said, maid, and BnGa partial-wave analyses and to the latest said fit MA19 that included our data. Selected photon-decay amplitudes N ∗ → γ n at the resonance poles are determined for the first time.

...
...
...

Pretplatite se na novosti o BH Akademskom Imeniku

Ova stranica koristi kolačiće da bi vam pružila najbolje iskustvo

Saznaj više