Traffic management is a significantly difficult and demanding task. It is necessary to know the main parameters of road networks in order to adequately meet traffic management requirements. Through this paper, an integrated fuzzy model for ranking road sections based on four inputs and four outputs was developed. The goal was to determine the safety degree of the observed road sections by the methodology developed. The greatest contribution of the paper is reflected in the development of the improved fuzzy step-wise weight assessment ratio analysis (IMF SWARA) method and integration with the fuzzy measurement alternatives and ranking according to the compromise solution (fuzzy MARCOS) method. First, the data envelopment analysis (DEA) model was applied, showing that three road sections have a high traffic risk. After that, IMF SWARA was applied to determine the values of the weight coefficients of the criteria, and the fuzzy MARCOS method was used for the final ranking of the sections. The obtained results were verified through a three-phase sensitivity analysis with an emphasis on forming 40 new scenarios in which input values were simulated. The stability of the model was proven in all phases of sensitivity analysis.
There are numerous algorithms and solutions for car or object detection as humanity is aiming towards the smart city solutions. Most solutions are based on counting, speed detection, traffic accidents and vehicle classification. The mentioned solutions are mostly based on high-quality videos, wide angles camera view, vehicles in motion, and are optimized for good visibility conditions intervals. A novelty of the proposed algorithm and solution is more accurate digital data extraction from video file sources generated by security cameras in Bosnia and Herzegovina from M18 roadway, but not limited only to that particular source. From the video file sources, data regarding number of vehicles, speed, traveling direction, and time intervals for the region of interest will be collected. Since finding contours approach is effective only on objects that are mobile, and because the application of this approach on traffic junctions did not yield desired results, a more specific approach of classification using a combination of Histogram of Oriented Gradients (HOG) and Support Vector Machines (Linear SVM) has shown to be more appropriate as the original source data can be used for training where the main benefit is the preservation of local second-order interactions, providing tolerance to local geometric misalignment and ability to work with small data samples. The features of the objects within a frame are extracted first by standardizing the feature variables and then computing the first order gradients of the frame. In the next stage, an encoding that remains robust to small changes while being sensitive to local frame content is produced. Finally, the HOG descriptors are generated and normalized again. In this way the channel histogram and spatial vector becomes the feature vector for the Linear SVM classifier. With the following parameters and setup system accuracy was around 85 to 95%. In the next phase, after cleaning protocols on collected data parameters, data will be used to research asphalt deformation effects.
Trends of globalization very often cause the emergence of phenomena that asymmetrically affect the overall sustainability of the transport system. In order to predict certain situations and potentially be able to manage the transport system, it is necessary to manage risk situations and traffic safety in a timely manner. This study has conducted an investigation which implies defining the level of safety of a total of nine sections of two-lane roads. The main aim of the paper is to create a new multiphase model consisting of CRITIC (The CRiteria Importance Through Intercriteria Correlation), Fuzzy FUCOM (Full Consistency Method), DEA (Data Envelopment Analysis), and Fuzzy MARCOS (Measurement Alternatives and Ranking according to the COmpromise Solution) methods for determining the level of traffic safety on road sections under the conditions of uncertainty. In order for the created model to be adequately applied, eight parameters were created, and they were classified through four inputs and four outputs. To calculate the significance of the inputs, the CRITIC method based on the symmetric correlation matrix was used, and taking into account the nature of the outputs, the Fuzzy FUCOM method based on averaged values using the fuzzy Bonferroni Mean (BM) operator was applied to determine their weights. To determine the degree of safety, the DEA model was created. After that, the Fuzzy MARCOS method was used in order to determine the final ranking of the remaining five sections of the road network. Finally, the verification of results was performed through three phases of Sensitivity Analysis (SA).
In this paper, empirical research about Passenger Car Equivalents (PCEs) on the longitudinal downgrade of two-lane roads in Bosnia and Herzegovina has been conducted in order to determine the influence of vehicle structure under free traffic flow conditions. The research has been carried out considering the classes of vehicles at cross-sections on the downgrade of two-lane roads. As a result, the negative influence of vehicle structure under free traffic flow conditions using passenger car equivalents (PCEs) has been determined. The results show that on the downgrade of two-lane roads, the value of passenger car equivalent decreases from the level terrain to the boundary minimum value for the determined downgrade g = −3.00%, after which its value starts to increase slightly. Based on the obtained values, the models calibrated with a second-degree polynomial have been developed to determine the average value of passenger car equivalent as a function of its boundary value. The paper also compares the results obtained by the developed models with the models from the Highway Capacity Manual under free traffic flow conditions. In addition, models for the percentage values of PCE15%, PCE50% and PCE85% have been established.
The estimation of the saturation flow rate is of utmost importance when defining the signal plan at intersections. Because of the numerous influential factors, the values of which are hard to be determined, the subject problem is to be regarded as an extremely complex one. This research deals with the estimation of a saturation flow rate of a shared lane with permitted left turns. The suggested algorithm is based on the application of the artificial neural networks where the data for training are received by simulation. The results obtained by the neural networks are compared with multiple linear regression and the known HCM 2010 approach for determining the saturated flow of a shared lane. The testing data have shown that the approach based on the artificial neural networks foresaw statistically significantly better values than the ones obtained by multiple linear regression, with an error of 27 veh/h against 49 veh/h. The HCM 2010 approach is significantly worse than the two others included in this research. The ways of the future development of the suggested method could include additional factors, such as the grade of the traffic lane, the proximity of the bus stops, and others.
Access or access point usually presents approaching roadway constructed directly along the driveway of the main road through whom vehicles are entering on or exiting from private property, but also it implies commercial approaching and access roads. Increased access-point density connected on the main road affects the disorder of functional dependence of fundamental parameters of traffic flow. An increase of access-point density on the main road has the effect of decrease of capacity and speed of traffic flow, but also increase of travel time. This paper is the outcome of research on several roadway segments in Bosnia and Herzegovina, and results are presenting the distribution of access points in a function of section length. Key results are related to access-point density, i.e. number of access points on both sides of two-lane highways divided by the length of the roadway segment. Depending on access-point density, decrease of free flow speed appears on mentioned sections which value goes from 2,35 km/h to 21,53 km/h and that is significant dispersion determined free flow speeds on given sections. In this paper is analyzed unplanned and uncontrolled construction of a large number of access points along the driveway of two-lane highway, which does not attract significant attention in our country and neighborhood. The main goal of this paper is to determine decrease of speed on segment of representative road network depending on access-point density and highlight the importance and necessity of increased control of access points.
In this paper, a new fuzzy multi-criteria decision-making model for traffic risk assessment was developed. A part of a main road network of 7.4 km with a total of 38 Sections was analyzed with the aim of determining the degree of risk on them. For that purpose, a fuzzy Measurement Alternatives and Ranking according to the COmpromise Solution (fuzzy MARCOS) method was developed. In addition, a new fuzzy linguistic scale quantified into triangular fuzzy numbers (TFNs) was developed. The fuzzy PIvot Pairwise RElative Criteria Importance Assessment—fuzzy PIPRECIA method—was used to determine the criteria weights on the basis of which the road network sections were evaluated. The results clearly show that there is a dominant section with the highest risk for all road participants, which requires corrective actions. In order to validate the results, a comprehensive validity test was created consisting of variations in the significance of model input parameters, testing the influence of dynamic factors—of reverse rank, and applying the fuzzy Simple Additive Weighing (fuzzy SAW) method and the fuzzy Technique for Order of Preference by Similarity to Ideal Solution (fuzzy TOPSIS). The validation test show the stability of the results obtained and the justification for the development of the proposed model.
The increase in the number of traffic accidents, as well as the development of modern traffic signaling, have influenced realistic traffic solutions at intersections to be aimed at constructing roundabouts, which has increased the capacity and safety of traffic participants. This paper has several goals that refer to the development of methodology for evaluating potential locations for roundabout construction. The subject of this research is based on the development of a model for the construction of a roundabout in Doboj using the integrated BWM (Best Worst Method) and MABAC (Multi-Attributive Border Approximation area Comparison) approach. Taking into account the fact that Doboj is a transport hub where many roads intersect and that it is a very important transit point, the necessity of constructing roundabouts is justified. Therefore, as part of the paper, an adequate methodology has been developed for an optimal selection of a potential location for the construction of a roundabout.
This paper demonstrates and provides additional findings and instructions to produce new cold-recycled layers of pavement structures spatially and temporally sustainable. At the same time, recycled pavement structures have been enhanced with optimum amounts of new stone materials and binders made of cement and foamed bitumen. The subject of the research is based on the examination of recycled asphalt from surface and bituminous base courses of pavement structures for use on higher-type roads. The aim of the research is to model the process of producing recycled asphalt by cold recycling to optimize the process of influential parameters. In addition, one of the primary goals of the research is to demonstrate a sustainable way of producing new cold-recycled layers of pavement structures. The obtained results indicated the inevitability of the use of recycled material from pavement structures with the possibility of applying secondary and tertiary crushing of recycled mass, which depends on the type of layer for which the recycled material would be used. The research resulted in an optimum mixture variant of the stabilization layer of pavement structure that consists mainly of recycled material from a worn pavement structure improved with a relatively small amount of new aggregate with the addition of minimal stabilizers made of cement and foamed bitumen. The results showed that the optimum mixture variant of the stabilization layer is spatially and temporally stable. Additionally, the presented optimum variant of the stabilization layer enables sustainable development of road networks with minimum consumption of new natural resources.
This paper deals with the analysis of traffic on the three-leg intersection in the city Cazin, at the junction of the three-leg intersection. The main issue of this research refers to the left-turn of vehicles coming from the merging road of the given intersection. The extensive analysis covered the current state of traffic flow by using the software tool, SIDRA INTERSECTION program. Within the suggested measures of improvement, the construction of a unsignalised roundabout was proposed. Implementation of the construction of a unsingalised roundabout would increase the level of traffic safety, reduce time losses while taking a left turn and therefore improve the Level of Service (LOS) as a qualitative indicator of traffic flow.
Passenger car equivalents (PCE) present a very important parameter for capacity calculation and road service level as well as a planning segment of road capacity. There are many ways of calculating PCE and most of them are based on Greenshield’s basic method. This paper studies the PCE calculation methodology and conditions under which it is applied. The first part of the paper is about role of PCE in analyzing traffic flow, and the rest of the paper is presenting methodologies for computation of PCE. Example of the latest method for determining PCE according to HCM-2010 is given in this paper. The goal of the research is presented by structural, parameter and functional analysis of methods. Further research directions of PCE are shown as well.
The main objective of the European policy of rail transport is the development of a single railway area. The opening of the railway sector to market competition impose that railway undertakings behave like any other modern enterprises in other markets and in other industries. It means, they must constantly develop and maintain competitive advantages, and be better than others. In today’s very intense competition conditions, this is the most difficult to achieve. The railway undertakings are challenged to find optimal solutions to operate efficiently and effectively, in order not only to survive on the transport market, but also to develop and maintain a competitive advantage. The paper developed innovative model for the evaluation of efficiency of railway operators for passenger transport assessing the scope of work of railway undertakings that can greatly help to increase the competitive ability of railway undertakings in the single railway market. The developed models allow the integration of indicator groups (resources, operational, financial, quality and safety indicators) into a single assessment of the scope of work of railway undertakings and also allow the provision of information about the corrective actions that can improve the scope of work of the railway undertaking. The proposed model has been tested on actual examples, e.g. railway undertaking Railways of Republic of Srpska. The analysis of the results shows exceptional suitability for use of developed approach for assessing the scope of work of railway undertakings.
An adequately functionally located traffic infrastructure is an important factor in the mobility of people because it affects the quality of traffic, safety and efficiency of carrying out transportation activities. Locating a roundabout on an urban network is an imperative for road engineering to address traffic problems such as reduction of traffic congestion, enhancement of security and sustainability, etc. Therefore, this paper evaluates potential locations for roundabout construction using Rough BWM (Best Worst Method) and Rough WASPAS (Weighted Aggregated Sum Product Assessment) models. Determination of relative criterion weights on the basis of which the potential locations were evaluated was carried out using the Rough BWM method. In this paper, in order to enable the most precise consensus for group decision-making, a Rough Hamy aggregator has been developed. The main advantage of the Hamy mean (HM) operator is that it can capture the interrelationships among multi-input arguments and can provide DMs more options. Until now, there is no research based on HM operator for aggregating imprecise and uncertain information. The obtained indicators are described through eight alternatives. The results show that the fifth and sixth alternatives are the locations that should have a priority in the construction of roundabouts from the perspective of sustainable development, which is confirmed throughout changes of parameter k and with comparing to other methods in the sensitivity analysis.
The paper conducts a survey of satisfaction level of users of two lane road in regards to constructional-geometrical factors influencing unimpeded traffic and influence of human element during its maintenance. Establishing the satisfaction level of users of existing road network is the primary goal of the paper, through the definition of Level of Service of relevance for the analysis of traffic of interurban road network. The survey was conducted on the road section Koprivna – Modrica, regional road R-465 (Busletic - Modrica). Using a questionnaire, the values of influence to the level of users’ satisfaction were established. Traffic infrastructure and elements of horizontal road signs have been identified as two main indicators giving negative grade to the level of satisfaction. The end of paper gives a review of measures for the improvement of existing conditions.
Nema pronađenih rezultata, molimo da izmjenite uslove pretrage i pokušate ponovo!
Ova stranica koristi kolačiće da bi vam pružila najbolje iskustvo
Saznaj više