Abstract Plant bioflavonoids are widely present in the human diet and have various protective properties. In this study, we have demonstrated the capacity of delphinidin and luteolin to increase human telomerase reverse transcriptase (hTERT) expression level and act as protective agents against halogenated boroxine-induced genotoxic damage. Halogenated boroxine K2(B3O3F4OH) (HB), is a novel compound with potential for the treatment of both benign and malignant skin changes. In vivo and in vitro studies have confirmed the inhibitory effects of HB on carcinoma cell proliferation and cell cycle progression as well as enzyme inhibition. However, minor genotoxic effects of HB are registered in higher applied concentrations, but those can be suppressed by in vitro addition of delphinidin and luteolin in appropriate concentrations. Fresh peripheral blood samples were cultivated for 72 h followed by independent and concomitant treatments of HB with luteolin or delphinidin. We analyzed the differences in relative hTERT expression between series of treatments compared with controls, which were based on normalized ratios with housekeeping genes. The obtained results have shown that selected bioflavonoids induce upregulation of hTERT that may contribute to the repair of genotoxic damage in vitro.
RELIABILITY OF URINE AS SOURCE FOR BIOLOGICAL INFORMATION FOR RISK ESTIMATION FOR PROSTATE MALIGNANCY
Micromeria pulegium (Rochel) Benth. is an endemic species of Lamiacea family that includes frequently used plants in culinary and folk medicine. As cytotoxic potential of some species of Micromeria genus has been confirmed, this study aimed to test unknown antiproliferative and genotoxic potential of M. pulegium, endemic bh species, aqueous leaf extract in normal (human lymphocytes) and cancer (human melanoma GR-M) cells in order to protect small populations of native M. pulegium populations or promote its controlled micropropagation or cultivation. Cytokinesis-block micronucleus cytome assay was applied for human lymphocyte cultures, while trypan blue exclusion assay was used for evaluation of cytotoxicity in human GR-M melanoma cells. Results demonstrate no genotoxic effects up to concentration of 0.2 mg/ml in human lymphocyte in vitro but significant reduction of cell viability in human GR-M melanoma cell line cultures treated with 0.3 mg/ml of Micromeria extract.
Conventional screening and diagnostic procedures in prostate complaints rely on PSA (Prostate Specific Antigen) concentration which is not specific for prostate cancer and frequently leads to unnecessary invasive procedures in order to exclude malignant disease. It is estimated that approximately 50% of persons who underwent tissue biopsy did so based on false positive PSA value. Therefore a proper and timely differential diagnosis of malignant disease using non-invasive techniques remains one of the biggest challenges in medicine. Urine is the invaluable source of biological information contained in small molecules i.e. RNA that is easily accessible and detectable using molecular genetics techniques. We describe economical and fast method for relative expression analysis applicable to any target gene using urine as a sample. Efficient non-invasive method for identification of malignant or high risk cases prove useful in reduction of patient distress during the diagnostic procedure and significantly reduce healthcare costs.
Satureja subspicata and S. horvatii are endemic species of the Balkan Peninsula and often used in traditional medicine in Bosnia and Herzegovina to treat different health conditions. We aimed to analyze the unevaluated apoptotic, genotoxic and cytotoxic effects of two Satureja species, as well as their content of phenolics that are mainly responsible for the plant's biological activity. Apoptotic and geno/cytotoxic activities of S. subspicata and S. horvatii were investigated in vitro in human lymphocyte culture and in vivo in mice. The content of the main phenolics in plant extracts was determined by ultra-high pressure liquid chromatography-MS-MS (UHPLC–MS/MS). Genotoxic and cytotoxic activities of Satureja extracts were evaluated in vitro by applying a cytokinesis-block micronucleus cytome assay in human lymphocyte culture and in vivo applying a mice reticulocytes micronucleus assay. SALSA RT-MLPA R011-C1 apoptosis assay was used for measuring the relative expression of 44 genes associated with the regulation of the apoptotic pathways in human lymphocyte cultures treated with different concentrations of two Satureja extracts. The first analysis of phenolic compounds in S. horvatii and S. subspicata determined by an UHPLC-MS/MS method revealed high levels of rosmarinic and caffeic acids. Minor genotoxic potential was determined in relation to the tested concentrations while no cytostatic and cytotoxic effects were revealed in vitro. However, when applied in concentrations of 200 mg/kg per os, aqueous extracts of two Satureja species significantly decreased frequency of reticulocytes micronuclei in treated mice against controls. Extracts of S. subspicata and S. horvatii in concentrations of 0.2 mg/mL, regardless of solvent used, downregulated pro-apoptotic and upregulated anti-apoptotic genes, showing anti-apoptotic activity. Our results indicate that the registered anti-genotoxic and anti-apoptotic activity is most likely related to the high level of phenolic acids (particularly rosmarinic and caffeic) in the tested extracts.
Tartrazine (E 102) is widely used yellow food colorant. It is used in nonalcoholic and sports drinks, spicy chips, jams, jelly and chewing gum and also found in many non-food products like soaps, cosmetics, shampoo, vitamins and some drugs. Tartrazine belongs to the most important and diverse group of synthetic dyes – azo dyes. Their use often creates controversies in the public since some of them are toxic, carcinogenic, mutagenic and cause different disorders or allergic reactions. In this study we aimed to evaluate genotoxic potential of tartrazine in human lymphocytes culture and its cytotoxic potential in human lymphocytes and melanoma GR-M cell line. For testing of its genotoxic and cytotoxic potential in human lymphocyte culture, we used chromosome aberration analysis and cytokinesis-block micronucleus cytome assay. For the analysis of its cytotoxic potential in human melanoma cell culture, we applied trypan blue exclusion assay.
Genotoxic effects of inorganic molecule dipotassium-trioxohydroxytetrafluorotriborate, K2(B3O3F4OH), a promising new therapeutic for the epidermal changes treatment, have been evaluated. In vitro analysis included evaluation of genotoxic and cytotoxic potential of K2(B3O3F4OH) in concentrations of 0.01, 0.02, 0.05 and 0.06 mg/mL applying cytokinesis-block micronucleus cytome assay in human lymphocyte culture. With the increase of concentration the frequency of micronuclei elevated but the differences were not significant. Also, there were no significant differences among the frequencies of nuclear buds and nucleoplasmic bridges between controls and treated cultures. Nuclear division index and nuclear division cytotoxycity index values did not reveal significant cytotoxic effect of K2(B3O3F4OH). In vivo genotoxic effects were analyzed on BALB/c mice applying reticulocytes micronucleus assay. K2(B3O3F4OH) was administrated intraperitoneally in final concentrations of 10, 20, 50 and 55 mg/kg. Significant decrease of reticulocytes ratio and increase of micronuclei frequencies against pre-treatments were found for both sampling periods of 48 and 72 hours of the highest applied concentration. This study confirmed that K2(B3O3F4OH) is not genotoxic in tested concentrations in vitro as well as in concentrations lower than 55 mg/kg in vivo. This study presents a reliable basis for further pre-clinical and potential clinical investigations.
Introduction: Bioflavonoids delphinidin (2-(3,4,5-Trihydroxyphenyl)chromenylium-3,5,7-triol) and luteolin (2-(3,4-Dihydroxyphenyl)-5,7-dihydroxy-4-chromenone) have been recognized as promising antioxidants and anticancer substances. Due to their extensive use, the goal of the research was to determine whether they have any genotoxic potential in vitro.Methods: Analysis of genotoxic potential was performed applying chromosome aberrations test in human lymphocyte culture, as this kind of research was not conducted abundantly for these two bioflavonoids. Delphinidin and luteolin were dissolved in DMSO and added to cultures in final concentrations of 25, 50 and 100 μM.Results: In human lymphocytes cultures Delphinidin induced PCDs in all treatments, potentially affecting the cell cycle and topoisomerase II activity. In concentration of 50 μM luteolin showed strong genotoxic effects and caused significant reduction of cell proliferation.Conclusion: Luteolin exhibited certain genotoxic and cytostatic potential. Delphinidin was not considered genotoxic, however its impact on mitosis, especially topoisomerase II activity, was revealed.
Nema pronađenih rezultata, molimo da izmjenite uslove pretrage i pokušate ponovo!
Ova stranica koristi kolačiće da bi vam pružila najbolje iskustvo
Saznaj više