Logo
User Name

Naida Lojo-Kadrić

Društvene mreže:

Nikolina Tomić, Sahra Esmkhani, Jamila Bayramova, Ahmet Dinc, Ahsen Morva, Belmina Sarić Medić, J. Ramic, N. Lojo-Kadrić, M. Gazouli et al.

Current standard treatments for osteosarcoma have not been changed for decades and have limited and variable success. The advancement of precision medicine technologies, along with the drug-repurposing and fast drug-screening methodologies available, has opened new avenues for the development of more effective therapeutic strategies. In this study, we evaluated the effectiveness of halogenated boroxine (HB) and dextran-coated cerium oxide nanoparticles—DexCeNPs (SD2)—in an in vitro osteosarcoma model. Both agents were tested individually and in combination. The research encompassed assessments of treatment-related cytotoxicity and cell viability, oxidative stress, and apoptotic and necrotic responses, as well as the effects on 3D spheroid models. The results demonstrated that the effects of HB and SD2 were strongly influenced by the dose, exposure time, and cell type. Both exhibited distinguished antitumor activity through cytotoxicity and specific reactive oxygen species (ROS) induction. The combined treatment produced modulated responses that were dependent on the treatment ratio and cell line, suggesting potential synergistic or selective interactions. Notably, the outcomes of the analysis conducted in 3D models revealed reduced toxicity toward non-tumor cells. These findings suggest the improved efficacy of HB and SD2 used in combination as a selective and novel antitumor strategy and underscore the need for further mechanistic studies at the transcriptomic and proteomic levels to elucidate the underlying pathways and clarify the mechanisms of action.

Simple Summary Climate change is becoming a serious threat to animal farming, making it important to find animals that can cope well with high and low temperatures. This study focused on two strains of indigenous Pramenka sheep from Bosnia and Herzegovina to determine how they respond to heat and cold. Researchers looked at the activity of specific genes that help animals deal with temperature stress using blood samples from 96 sheep collected in summer and winter across different regions. The results showed that one strain, Hercegovačka sheep, had much higher activity of a gene that protects cells from heat damage, especially during hot weather. Both strains showed strong abilities to control inflammation and protect themselves from harmful effects caused by heat, which helps them stay healthy in challenging climates. This study concluded that Hercegovačka sheep have better natural protection against temperature changes, but both strains have useful traits for surviving in a changing climate. These results can help farmers and scientists choose and protect sheep breeds that are more likely to thrive as weather conditions become more extreme, ensuring food production and supporting rural communities in the future.

Halogenated boroxine K2[B3O3F4OH] (HB), an inorganic derivative of cyclic anhydride of boronic acid, is patented as a boron-containing compound with potential for the treatment of both benign and malignant skin changes. HB has effectively inhibited the growth of several carcinoma cell lines. Because of the growing interest in autophagy induction as a therapeutic approach in bladder carcinoma (BC), we aimed to assess the effects of HB on metabolic phenotype and autophagy levels in 5637 human bladder carcinoma cells (BC). Cytotoxicity was evaluated using the alamar blue assay, and the degree of autophagy was determined microscopically. Mitochondrial respiration and glycolysis were measured simultaneously. The relative expression of autophagy-related genes BECN1, P62, BCL-2, and DRAM1 was determined by real-time PCR. HB affected cell growth, while starvation significantly increased the level of autophagy in the positive control compared to the basal level of autophagy in the untreated negative control. In HB-treated cultures, the degree of autophagy was higher compared to the basal level, and metabolic phenotypes were altered; both glycolysis and oxidative phosphorylation (OXPHOS) were decreased by HB at 0.2 and 0.4 mg/mL. Gene expression was deregulated towards autophagy induction and expansion. In conclusion, HB disrupted the bioenergetic metabolism and reduced the intracellular survival potential of BC cells. Further molecular studies are needed to confirm these findings and investigate their applicative potential.

Abstract Anti-proliferative effects of halogenated boroxine – K2(B3O3F4OH) (HB) – have been confirmed in multiple cancer cell lines, including melanoma, but the exact mechanism of action is still unknown. This study aimed to determine its cytotoxic effects on human Caucasian melanoma (GR-M) cell growth in vitro as well as on the expression of cell death-related genes BCL-2, BECN1, DRAM1, and SQSTM1. GR-M and peripheral blood mononuclear (PBM) cells were treated with different HB concentrations and their growth inhibition and relative gene expression profiles were determined using the Alamar blue assay and real-time PCR. HB significantly inhibited cell growth of both GR-M and PBM cells but was even more effective in GR-M melanoma cells, as significant inhibition occurred at a lower HB concentration of 0.2 mg/mL. GR-M BCL-2 expression was significantly downregulated (P=0.001) at HB concentration of 0.4 mg/mL, which suggests that HB is a potent tumour growth inhibitor. At the same time, it upregulated BCL-2 expression in normal (PBM) cells, probably by activating protective mechanisms against induced cytotoxicity. In addition, all but the lowest HB concentrations significantly upregulated SQSTM1 (P=0.001) in GR-M cells. Upregulated BECN1 expression suggests early activation of autophagy at the lowest HB concentration in SQSTM1 cells and at all HB concentrations in PBM cells. Our findings clearly show HB-associated cell death and, along with previous cytotoxicity studies, reveal its promising anti-tumour potential.

The aim of the paper is to present the results of the VNTR gene polymorphism genetic variants molecular typing for endothelial nitric oxide synthase (eNOS) in human population of Tuzla Canton. Based on the analysis of the distribution of eNOS gene genotypes in the total sample of respondents, the highest frequency was recorded for the (b/b) genotype, which was 73.0%. For the heterozygous (a/b) genotype of the eNOS gene, a frequency of 24.0% was determined, and a frequency of 3.0% was recorded for the (a/a) genotype. The research resulted in a database of local and global significance, namely, the incorporation of these data into the existing regional and European genetic database.

Apoptosis induction is a promising approach in targeting tumor cells. As halogenated boroxine (HB) shows antitumor activity, but its mechanism of action in hematological tumors remains unclear, in this study, we aimed to analyze apoptosis triggering in normal and UT‐7 leukemia cells by HB. Methods for assessing cell viability and cytotoxicity, apoptosis detection, relative expression of 84 apoptosis‐associated genes and BCL‐2, and functional analysis were applied. Pronounced HB activities in inhibition of cell viability, cytotoxicity, and apoptosis induction with measurable differences between tumor and normal cells were found. HB modulated the expression of 21 genes, predominantly downregulated the antiapoptotic genes in leukemia. The functional association revealed HB's impact on inhibition of NF‐κB signaling pathway. BCL‐2 expression decreasing was found only in UT‐7 leukemia. This study identified HB as an apoptosis inducer affecting leukemia but not normal cells considering mechanisms of selective activity that may be a great advantage of HB applications.

Irina Milovač, V. Vidović, J. Ramic, N. Lojo-Kadrić, M. Hadzic, Z. Mavija, Stojko Vidović, L. Pojskić

Background/Aim: Irritable bowel syndrome (IBS) belongs to the gastrointestinal disorders characterised by abdominal discomfort and pain, altered constipation, diarrhoea and stomach distension. The aim was to assess relationship between the selected genetic polymorphisms with IBS, their combined genotype effect as well as to assess a difference in the distribution of allele and genotype frequencies of selected loci between case and control group. Methods: This was a prospective study which included 29 participants, 20 individuals diagnosed with IBS based on Rome III criteria and 9 healthy individuals. The study analysed the selected genetic polymorphisms as possible risk factors for IBS according to the model of the case-control study. Genotyping was performed for FKBP5, DRD2 and DAT polymorphisms qualified as risk factors for IBS in previous researches. Results: The results revealed a significant association between DAT polymorphism with IBS, both, at the allelic level (p = 0.006) and genotype level (p = 0.031). Individuals with 434 allelic variant in the genotype have six time higher probability for developing IBS, in comparison to the individuals without this allelic variant. The statistical association between other analysed polymorphism and IBS was not reached. The analysis of combined effects of selected polymorphisms revealed no association with IBS, except FKBP5 and DAT which result was at the level of statistical significance (p = 0.05). Conclusion: Further analysis which would include DAT polymorphism with larger sample size, as well as other genes involved in dopamine neurotransmitter system would be of great interest to define closer conclusion of IBS aetiology.

...
...
...

Pretplatite se na novosti o BH Akademskom Imeniku

Ova stranica koristi kolačiće da bi vam pružila najbolje iskustvo

Saznaj više