Logo

Publikacije (151)

Nazad
M. Kulenović, David T. McArdle

Global dynamic results are obtained for families of competitive systems of difference equations of the form

<jats:p>We investigate the global asymptotic stability of the following second order rational difference equation of the form <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M1"><mml:msub><mml:mrow><mml:mi>x</mml:mi></mml:mrow><mml:mrow><mml:mi>n</mml:mi><mml:mo>+</mml:mo><mml:mn mathvariant="normal">1</mml:mn></mml:mrow></mml:msub><mml:mo>=</mml:mo><mml:mrow><mml:mrow><mml:mfenced separators="|"><mml:mrow><mml:mi>B</mml:mi><mml:msub><mml:mrow><mml:mi>x</mml:mi></mml:mrow><mml:mrow><mml:mi>n</mml:mi></mml:mrow></mml:msub><mml:msub><mml:mrow><mml:mi>x</mml:mi></mml:mrow><mml:mrow><mml:mi>n</mml:mi><mml:mo>-</mml:mo><mml:mn mathvariant="normal">1</mml:mn></mml:mrow></mml:msub><mml:mo>+</mml:mo><mml:mi>F</mml:mi></mml:mrow></mml:mfenced></mml:mrow><mml:mo>/</mml:mo><mml:mrow><mml:mfenced separators="|"><mml:mrow><mml:mi>b</mml:mi><mml:msub><mml:mrow><mml:mi>x</mml:mi></mml:mrow><mml:mrow><mml:mi>n</mml:mi></mml:mrow></mml:msub><mml:msub><mml:mrow><mml:mi>x</mml:mi></mml:mrow><mml:mrow><mml:mi>n</mml:mi><mml:mo>-</mml:mo><mml:mn mathvariant="normal">1</mml:mn></mml:mrow></mml:msub><mml:mo>+</mml:mo><mml:mi>c</mml:mi><mml:msubsup><mml:mrow><mml:mi>x</mml:mi></mml:mrow><mml:mrow><mml:mi>n</mml:mi><mml:mo>-</mml:mo><mml:mn mathvariant="normal">1</mml:mn></mml:mrow><mml:mrow><mml:mn mathvariant="normal">2</mml:mn></mml:mrow></mml:msubsup></mml:mrow></mml:mfenced></mml:mrow></mml:mrow><mml:mo>,</mml:mo><mml:mo> </mml:mo><mml:mo> </mml:mo><mml:mi>n</mml:mi><mml:mo>=</mml:mo><mml:mn mathvariant="normal">0,1</mml:mn><mml:mo>,</mml:mo><mml:mo>…</mml:mo><mml:mo>,</mml:mo></mml:math> where the parameters <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M2"><mml:mrow><mml:mi>B</mml:mi></mml:mrow></mml:math>, <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M3"><mml:mrow><mml:mi>F</mml:mi></mml:mrow></mml:math>, <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M4"><mml:mrow><mml:mi>b</mml:mi></mml:mrow></mml:math>, and <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M5"><mml:mrow><mml:mi>c</mml:mi></mml:mrow></mml:math> and initial conditions <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M6"><mml:mrow><mml:msub><mml:mrow><mml:mi>x</mml:mi></mml:mrow><mml:mrow><mml:mo>-</mml:mo><mml:mn mathvariant="normal">1</mml:mn></mml:mrow></mml:msub></mml:mrow></mml:math> and <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M7"><mml:mrow><mml:msub><mml:mrow><mml:mi>x</mml:mi></mml:mrow><mml:mrow><mml:mn mathvariant="normal">0</mml:mn></mml:mrow></mml:msub></mml:mrow></mml:math> are positive real numbers. The map associated with this equation is always decreasing in the second variable and can be either increasing or decreasing in the first variable depending on the parametric space. In some cases, we prove that local asymptotic stability of the unique equilibrium point implies global asymptotic stability. Also, we show that considered equation exhibits the Naimark-Sacker bifurcation resulting in the existence of the locally stable periodic solution of unknown period.</jats:p>

A. Bilgin, A. Brett, M. Kulenović, E. Pilav

In this paper, we consider the cooperative system [Formula: see text] where all parameters [Formula: see text] are positive numbers and the initial conditions [Formula: see text] are nonnegative numbers. We describe the global dynamics of this system in a number of cases. An interesting feature of this system is that it exhibits a coexistence of locally stable equilibrium and locally stable periodic solutions as well as the Allee effect.

E. Janowski, M. Kulenović

We investigate the nonautonomous difference equation with real initial conditions and coefficients g i , i = 0 , 1 which are in general functions of n and/or the state variables x n , x n − 1 , … , and satisfy g 0 + g 1 = 1 . We also obtain some global results about the behavior of solutions of the nonautonomous non-homogeneous difference equation where g i , i = 0 , 1 , 2 are functions of n and/or the state variables x n , x n − 1 , … , with g 0 + g 1 = 1 . Our results are based on the explicit formulas for solutions. We illustrate our results by numerous examples.

M. Kulenović, O. Merino

Abstract In this paper we present results on the existence of invariant curves for planar maps that are monotone with respect to either the south-east or north-east ordering. Some of these curves are the stable or unstable manifolds of hyperbolic fixed points (saddle points) or non-hyperbolic fixed points, and are also the boundary of basins of attraction of such points.

Elliott J. Bertrand, M. Kulenović

We investigate generalized Beverton–Holt difference equations of order k of the form xn+1 = af(xn, xn−1, . . . , xn+1−k) 1 + f(xn, xn−1, . . . , xn+1−k) , n = 0, 1, . . . , k ≥ 1, where f is a function nondecreasing in all arguments, a > 0, and x0, . . . , x1−k ≥ 0 such that the solution is defined. We will discuss several interesting examples of such equations involving transcendental functions and present some general theory. In particular, we will analyze the global dynamics of the class of difference equations for which f(x, . . . , x) is chosen to be a concave function. Moreover, we give sufficient conditions to guarantee this equation has a unique positive and globally attracting fixed point. AMS Subject Classifications: 39A20, 39A28, 39A30.

Eduardo Liz, M. Kulenović, E. Pilav, I. Yalçinkaya, E. Elsayed

In this paper, our aim is to study the dynamical behavior of third-order system of rational difference equations xn+1 = αxn−2 β + γxnxn−1xn−2 , yn+1 = α1yn−2 β1 + γ1ynyn−1yn−2 , n = 0, 1, · · · . where the parameters α, β, γ, α1, β1, γ1 and initial conditions x0, x−1, x−2, y0, y−1, y−2 are positive real numbers. Some numerical examples are given to verify our theoretical results.

We investigate the global asymptotic stability and Naimark-Sacker bifurcation of the dierence equation xn+1 = F bxnxn 1 +cx 2 1 +f ; n = 0; 1;:::

We investigate global dynamics of the following systems of difference equations , , , where the parameters , , , , , and are positive numbers and the initial conditions and are arbitrary nonnegative numbers. This system is a version of the Leslie-Gower competition model for two species. We show that this system has rich dynamics which depends on the part of parametric space.

A. Bilgin, M. Kulenović

We present some basic discrete models in populations dynamics of single species with several age classes. Starting with the basic Beverton-Holt model that describes the change of single species we discuss its basic properties such as a convergence of all solutions to the equilibrium, oscillation of solutions about the equilibrium solutions, Allee’s effect, and Jillson’s effect. We consider the effect of the constant and periodic immigration and emigration on the global properties of Beverton-Holt model. We also consider the effect of the periodic environment on the global properties of Beverton-Holt model.

T. Wanner We investigate global dynamics of the equation xn+1=xn−12bxnxn−1+cxn−12+f,n=0,1,2,…, where the parameters b,c, and f are nonnegative numbers with condition b + c > 0,f ≠ 0 and the initial conditions x−1,x0 are arbitrary nonnegative numbers such that x−1+x0>0. We obtain precise characterization of basins of attraction of all attractors of this equation and describe the dynamics in terms of bifurcations of period‐two solutions. Copyright © 2015 John Wiley & Sons, Ltd.

Nema pronađenih rezultata, molimo da izmjenite uslove pretrage i pokušate ponovo!

Pretplatite se na novosti o BH Akademskom Imeniku

Ova stranica koristi kolačiće da bi vam pružila najbolje iskustvo

Saznaj više