Software-defined networking (SDN) has attracted the attention of the research community in recent years, as evidenced by a large number of survey and review papers. The architecture of SDN clearly recognizes three planes: application, control, and data planes. The application plane executes network applications, the control plane regulates the rules for the entire network based on the requests generated by network applications, and based on the set rules, the controller configures the switches in the data plane. The role of the switch in the data plane is to simply forward packets based on the instructions given by the controller. By analyzing the SDN-related research papers, it is observed that research, from the very beginning, is insufficiently focused on the data plane. Therefore, this paper gives a comprehensive overview of the data plane survey with a particular emphasis on the problem of programmability and flexibility. The first part of the survey is dedicated to the evaluation of actual data plane architectures through several definitions and aspects of data plane flexibility and programmability. Then, an overview of the SDN-related research was presented with the aim of identifying the key factors influencing the gradual deviation from the original data plane architectures given with ForCES and OpenFlow specifications. In this paper, we used the term data plane evolution for this deviation. By establishing a correlation between the treated problem and the problem-solving approaches, the limitations of ForCES and OpenFlow data plane architectures were identified. Based on the identified limitations, a generalization of approaches to addressing the problem of data plane flexibility and programmability has been made. By examining the generalized approaches, open issues have been identified, establishing the grounds for future research directions proposal.
The well-known major drawbacks of the Orthogonal Frequency-Division Multiplexing (OFDM), namely, the transmitter versus receiver Carrier Frequency Offset (CFO), and the Peak-to-Average Power Ratio (PAPR) of the transmitted OFDM signal, may degrade the error performance, by causing Intercarrier Interference (ICI), as well as in-band distortion and adjacent channel interference, respectively. Moreover, in spite of the utmost care given to CFO estimation and compensation in OFDM wireless systems, such as wireless local networks or the mobile radio systems of the fourth generation, e.g., the Long-Term Evolution (LTE), still some residual CFO remains. With this regard, though so far the CFO and the PAPR have been treated independently, in this paper, we develop an Error Vector Magnitude (EVM) based analytical model for the CFO-induced constellation symbol phase distortion, which essentially reveals that the maximal CFO-caused squared phase deviation is linear with the instantaneous (per-OFDM-symbol) PAPR. This implies that any PAPR reduction technique, such as simple clipping or coding, indirectly suppresses the CFO-induced phase deviation, too. The analytically achieved results and conclusions are tested and successfully verified by conducted Monte Carlo simulations.
In mobile communication systems, the transmitted RF signal is subject to mutually independent deterministic path loss and stochastic multipath and shadow fading. As at each spatial location mostly the composite signal samples are measured, their components are distinguished by averaging out the multipath-caused signal level variations, while preserving just the ones due to shadowing. The prerequisite for this is the appropriateness of the local area averaging path length that enables obtaining the local mean (composed of mean path loss and shadow fading) and the multipath fading as difference between the composite signal sample and the local mean. However, the so far reported analytical approaches to estimation of the averaging path length are based on considering either the multipath or just the shadow fading, with applicability limited to only specific topologies and frequencies. Therefore, in this paper, the most widely used Lee analytical method is generalized and improved by considering multipath and shadowing concurrently, so providing the general closed-form elementary-function based estimation of the optimal averaging path length as a function of common multipath and shadow fading parameters characterizing particular propagation environment. The model enables recommendations for the optimal averaging length for all propagation conditions facing the mobile receiver.
Nema pronađenih rezultata, molimo da izmjenite uslove pretrage i pokušate ponovo!
Ova stranica koristi kolačiće da bi vam pružila najbolje iskustvo
Saznaj više