Logo

Publikacije (26)

Nazad

This paper investigates the dynamics of non-autonomous cooperative systems of difference equations with asymptotically constant coefficients. We are mainly interested in global attractivity results for such systems and the application of such results to evolutionary population cooperation models. We use two methods to extend the global attractivity results for autonomous cooperative systems to related non-autonomous cooperative systems which appear in recent problems in evolutionary dynamics.

This paper investigates the rate of convergence of a certain mixed monotone rational second-order difference equation with quadratic terms. More precisely we give the precise rate of convergence for all attractors of the difference equation $x_{n+1}=\frac{Ax_{n}^{2}+Ex_{n-1}}{x_{n}^{2}+f}$, where all parameters are positive and initial conditions are non-negative.The mentioned methods are illustrated in several characteristic examples. 2020 Mathematics Subject Classification. 39A10, 39A20, 65L20.

Dž Burgić, Z. Nurkanović

We consider the following system of rational difference equations in the plane: $$\left\{\begin{aligned}%{rcl}x_{n+1} &= \frac{\alpha_1}{A_1+B_1 x_n+ C_1y_n} \\[0.2cm]y_{n+1} &= \frac{\alpha_2}{A_2+B_2 x_n+ C_2y_n}\end{aligned}\right. \, , \quad n=0,1,2,\ldots $$ where the parameters $\alpha_1, \alpha_2, A_1, A_2, B_1, B_2, C_1, C_2$ are positive numbers and initial conditions $x_0$ and $y_0$ are nonnegative numbers. We prove that the unique positive equilibrium of this system is globally asymptotically stable. Also, we determine the rate of convergence of a solution that converges to the equilibrium $E=(\bar{x},\bar{y})$ of this systems.   2000 Mathematics Subject Classification. 39A10, 39A11, 39A20

This paper investigates an autonomous discrete-time glycolytic oscillator model with a unique positive equilibrium point which exhibits chaos in the sense of Li–Yorke in a certain region of the parameters. We use Marotto’s theorem to prove the existence of chaos by finding a snap-back repeller. The illustration of the results is presented by using numerical simulations.

This paper investigates an autonomous predator-prey system of difference equations with three equilibrium points and exhibits chaos in the sense of Li-Yorke in the positive equilibrium point. Numerical simulations are presented to illustrate our results.

We investigate a discrete counterpart of planar dynamical system of nonlinear differential equations induced by kinetic differential equations for a two-species chemical reaction. Chemical reactions exhibit a wide range of dynamical behavior. We show how the theoretical analysis provides insight into the potential behavior of chemical reaction systems, determining the areas of parametric space which indicate scenarios for local stability, then for one type of bifurcation co-dimension one and one type of bifurcation co-dimension two. Precisely, we prove the existence of period-doubling bifurcation and 1:2 resonance bifurcation also, by using the center manifold theorem and the technique of normal forms. All mathematical investigations are illustrated with numerical examples, bifurcation diagrams, Lyapunov exponents and phase portraits.

This paper investigates the dynamics of non-autonomous competitive systems of difference equations with asymptotically constant coefficients. We are mainly interested in global attractivity results for such systems and the application of such results to the evolutionary population of competition models of two species.

This paper investigates the local and global character of the unique positive equilibrium of a mixed monotone fractional second-order difference equation with quadratic terms. The corresponding associated map of the equation decreases in the first variable, and it can be either decreasing or increasing in the second variable depending on the corresponding parametric values. We use the theory of monotone maps to study global dynamics. For local stability, we use the center manifold theory in the case of the non-hyperbolic equilibrium point. We show that the observed equation exhibits three types of global behavior characterized by the existence of the unique positive equilibrium, which can be locally stable, non-hyperbolic when there also exist infinitely many non-hyperbolic and stable minimal period-two solutions, and a saddle. Numerical simulations are carried out to better illustrate the results.

We investigate the local and global character of the unique equilibrium point and boundedness of the solutions of certain homogeneous fractional difference equation with quadratic terms. Also, we consider Neimark–Sacker bifurcations and give the asymptotic approximation of the invariant curve.

We investigate the global dynamics of the following rational difference equation of second order\begin{equation*}x_{n+1}=\frac{Ax_{n}^{2}+Ex_{n-1}}{x_{n}^{2}+f},\quad n=0,1,\ldots ,\end{equation*}where the parameters $A$ and $E$ are positive real numbers and the initial conditions $x_{-1}$ and $x_{0}$ are arbitrary non-negative real numbers such that $x_{-1}+x_{0}>0$. The transition function associated with the right-hand side of this equation is always increasing in the second variable and can be either increasing or decreasing in the first variable depending on the parametric values. The unique feature of this equation is that the second iterate of the map associated with this transition function changes from strongly competitive to strongly cooperative. Our main tool for studying the global dynamics of this equation is the theory of monotone maps while the local stability is determined by using center manifold theory in the case of the nonhyperbolic equilibrium point.

T. F. Ibrahim, Z. Nurkanović

By using the Kolmogorov-Arnold-Moser (KAM) theory, we investigate the stability of two elliptic equilibrium points (zero equilibrium and negative equilibrium) of the difference equation t n + 1 = α t n + β t n 2 − t n − 1 , n = 0 , 1 , 2 , … , where are t − 1 , t 0 , α ∈ R , α ≠ 0 , β > 0 . By using the symmetries we find the periodic solutions with some periods. Finally, some numerical examples are given to verify our theoretical results.

<jats:p>We investigate the global asymptotic stability of the following second order rational difference equation of the form <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M1"><mml:msub><mml:mrow><mml:mi>x</mml:mi></mml:mrow><mml:mrow><mml:mi>n</mml:mi><mml:mo>+</mml:mo><mml:mn mathvariant="normal">1</mml:mn></mml:mrow></mml:msub><mml:mo>=</mml:mo><mml:mrow><mml:mrow><mml:mfenced separators="|"><mml:mrow><mml:mi>B</mml:mi><mml:msub><mml:mrow><mml:mi>x</mml:mi></mml:mrow><mml:mrow><mml:mi>n</mml:mi></mml:mrow></mml:msub><mml:msub><mml:mrow><mml:mi>x</mml:mi></mml:mrow><mml:mrow><mml:mi>n</mml:mi><mml:mo>-</mml:mo><mml:mn mathvariant="normal">1</mml:mn></mml:mrow></mml:msub><mml:mo>+</mml:mo><mml:mi>F</mml:mi></mml:mrow></mml:mfenced></mml:mrow><mml:mo>/</mml:mo><mml:mrow><mml:mfenced separators="|"><mml:mrow><mml:mi>b</mml:mi><mml:msub><mml:mrow><mml:mi>x</mml:mi></mml:mrow><mml:mrow><mml:mi>n</mml:mi></mml:mrow></mml:msub><mml:msub><mml:mrow><mml:mi>x</mml:mi></mml:mrow><mml:mrow><mml:mi>n</mml:mi><mml:mo>-</mml:mo><mml:mn mathvariant="normal">1</mml:mn></mml:mrow></mml:msub><mml:mo>+</mml:mo><mml:mi>c</mml:mi><mml:msubsup><mml:mrow><mml:mi>x</mml:mi></mml:mrow><mml:mrow><mml:mi>n</mml:mi><mml:mo>-</mml:mo><mml:mn mathvariant="normal">1</mml:mn></mml:mrow><mml:mrow><mml:mn mathvariant="normal">2</mml:mn></mml:mrow></mml:msubsup></mml:mrow></mml:mfenced></mml:mrow></mml:mrow><mml:mo>,</mml:mo><mml:mo> </mml:mo><mml:mo> </mml:mo><mml:mi>n</mml:mi><mml:mo>=</mml:mo><mml:mn mathvariant="normal">0,1</mml:mn><mml:mo>,</mml:mo><mml:mo>…</mml:mo><mml:mo>,</mml:mo></mml:math> where the parameters <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M2"><mml:mrow><mml:mi>B</mml:mi></mml:mrow></mml:math>, <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M3"><mml:mrow><mml:mi>F</mml:mi></mml:mrow></mml:math>, <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M4"><mml:mrow><mml:mi>b</mml:mi></mml:mrow></mml:math>, and <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M5"><mml:mrow><mml:mi>c</mml:mi></mml:mrow></mml:math> and initial conditions <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M6"><mml:mrow><mml:msub><mml:mrow><mml:mi>x</mml:mi></mml:mrow><mml:mrow><mml:mo>-</mml:mo><mml:mn mathvariant="normal">1</mml:mn></mml:mrow></mml:msub></mml:mrow></mml:math> and <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M7"><mml:mrow><mml:msub><mml:mrow><mml:mi>x</mml:mi></mml:mrow><mml:mrow><mml:mn mathvariant="normal">0</mml:mn></mml:mrow></mml:msub></mml:mrow></mml:math> are positive real numbers. The map associated with this equation is always decreasing in the second variable and can be either increasing or decreasing in the first variable depending on the parametric space. In some cases, we prove that local asymptotic stability of the unique equilibrium point implies global asymptotic stability. Also, we show that considered equation exhibits the Naimark-Sacker bifurcation resulting in the existence of the locally stable periodic solution of unknown period.</jats:p>

We investigate global dynamics of the following second order rational difference equation x n + 1 = x n x n − 1 + α x n + β x n − 1 a x n x n − 1 + b x n − 1 , where the parameters α , β , a , b are positive real numbers and initial conditions x − 1 and x 0 are arbitrary positive real numbers. The map associated to the right-hand side of this equation is always decreasing in the second variable and can be either increasing or decreasing in the first variable depending on the corresponding parametric space. In most cases, we prove that local asymptotic stability of the unique equilibrium point implies global asymptotic stability.

Nema pronađenih rezultata, molimo da izmjenite uslove pretrage i pokušate ponovo!

Pretplatite se na novosti o BH Akademskom Imeniku

Ova stranica koristi kolačiće da bi vam pružila najbolje iskustvo

Saznaj više