Logo

Publikacije (9)

Nazad

Man is continuously exposed to ionizing radiation because of the presence of naturally occurring radioactive materials (NORM) in the environment. Various technological processes of processing and using of materials that contain natural radionuclides generate materials of enhanced natural radioactivity (TENORM). The largest contribution to irradiance with natural sources of ionizing radiation is the exposure of the population to indoor radon. This gas originates from the radioactive decay of 226Ra and 224Ra that are present in the soil under houses and building materials. Depending on the type of building materials, indoor exposure to radon at dwellings and workplaces can be over a thousand times greater than in outdoor space. In Bosnia and Herzegovina, no valid and comprehensive radiological studies on the building materials have been performed that would guarantee for their dosimetric safety use for installation in residential and industrial buildings, highways, as well as their application for other purposes. The quantification of the radon levels that comes from building materials is a necessary and very important part of the global protection of the population from ionizing radiation. This paper presents the first results of a study on the radon activity concentrations in building materials used in Bosnia and Herzegovina. Measurements were performedwith a professional Alpha GUARD system. The mean values of the activity concentration of the exhaled radon of investigated building materials varied from 10 Bqm-3 to 101 Bqm-3, radon exhalation rate values ranged from 77.0 mBqm-2h-1 to 777.7 mBqm-2h-1. Gamma dose rate was in the range 57–112 nSv h−1.

Abstract The results of the specific activities of 232Th, 226Ra and 40K measured in samples of commonly used building materials in Bosnia and Herzegovina are presented. Measurements were performed by gamma-ray spectrometer with coaxial HPGe detector. The surface radon exhalation and mass exhalation rates for selected building materials were also measured. The determined values of specific activities were in range from 3.16±0.81 Bq kg−1 to 64.79±6.16 Bq kg−1 for 232Th, from 2.46±0.95 Bq kg−1 to 53.89 ±3.67 Bq kg−1 for 226Ra and from 28.44±7.28 Bq kg−1 to 557.30±93.38 Bq kg−1 for 40K. The radium equivalent activity, the activity concentration index, the external and internal hazard indices as well as the absorbed dose rate in indoor air and the corresponding annual effective dose, due to gamma-ray emission from the radioactive nuclides in the building material, were evaluated in order to assess the radiation hazards for people. The measured specific activities of the natural radioactive nuclides in all investigated building materials were compared with the published results for building materials from other European countries. It can be noted that the results from this study are similar to the data for building materials from neighbouring countries and for building materials used in the EU Member States. The radiological hazard parameters of the building materials were all within the recommended limits for safety use.

Abstract Investigations of natural radioactivity in water, air, and soil are conducted frequently and routinely. Exposure to high concentrations of natural radioactive radon gas can cause irradiation of respiratory organs, which can lead to lung cancer. This paper presents measurements of radon activity concentrations in dug wells and natural springs of the Tuzla area (Bosnia and Herzegovina), which ranged from 214 to 3702 mBq L-1. Our results have shown that the radon activity concentration did not exceed the EU reference level for radon in drinking water (100 Bq L-1).

Radon is a colorless, odorless, radioactive gas. It is formed naturally from the decay of radioactive elements, such as uranium, which are found in different amounts in soil and rock throughout the world. Radon gas in the soil and rock can move into the air and into underground water and surface water. In this paper the results of measurements of radon activity concentration in drinking water from drilled wells in Tuzla City, Bosnia and Herzegovina are presented. The obtained results of radon activity concentration in drinking water samples ranged from 182 mBqL-1 to 2368 mBqL-1 which does not exceed the value of 11.1 BqL-1 recommended by the Environmental Protection Agency for drinking water. The measurements of radon activity concentration were conducted with AlphaGUARD and AquaKIT equipment (Genitron Instruments).

Abstract With gamma spectrometric method 23 samples of mineral and thermal waters of Bosnia and Herzegovina were analyzed. Activity concentrations of the investigated radionuclides were in the range 12–346 mBq·L−1 for 40K, 1.1–791 mBq·L−1 for 226Ra, 0.2–221 mBq·L−1 for 228Ra, 13–367 mBq·L−1 for 238U, and 0.6–17 mBq·L−1 for 235U. For all investigated radionuclides annual effective dose was estimated. The estimated total annual committed effective dose received by population as a result of ingestion of water was in the range 0.11–2.51 μSv·y−1 for thermal water and in the range 0.11–38.8 μSv·y−1 for mineral water. Measurement of activity concentrations of natural radionuclides in the examined samples was carried out with a gamma-spectrometer with high-purity germanium (HPGe) detector, having a relative efficiency of 70%.

The results of activity concentration measurements of natural occurring radioactive nuclides 238U, 235U, 232Th, 226Ra, and 40K in surface soil samples collected in the area of cities Tuzla and Lukavac, northeast region of Bosnia and Herzegovina were presented. Soil sampling was conducted at the localities that are situated in the vicinity of industrial zones of these cities. The measured activity was in the range from (8 ± 4) to (95 ± 28) Bq kg–1 for 238U, from (0.41 ± 0.06) to (4.6 ± 0.7) Bq kg–1 for 235U, from (7 ± 1) to (66 ± 7) Bq kg–1 for 232Th, from (6 ± 1) to (55 ± 6) Bq kg–1 for 226Ra, and from (83 ± 12) to (546 ± 55) Bq kg–1 for 40K. In order to evaluate the radiological hazard of the natural radioactivity for people living near industrial zones, the absorbed dose rate, the annual effective dose and the radium equivalent activity have been calculated and compared with the internationally approved values.

Nema pronađenih rezultata, molimo da izmjenite uslove pretrage i pokušate ponovo!

Pretplatite se na novosti o BH Akademskom Imeniku

Ova stranica koristi kolačiće da bi vam pružila najbolje iskustvo

Saznaj više