This paper deals with the design of a novel spectrometer of fast neutrons in nuclear safeguards applications based on the liquid organic scintillator EJ-309 with materials of different thickness surrounding the detector. The investigation was performed on the simulated data obtained by the MCNPX-PoliMi numerical code based on the Monte Carlo method. Among the various materials (polyethylene, iron, aluminum, and graphite) investigated as layers around the scintillator, polyethylene and iron have shown the most promising characteristics for evaluation of fast neutron energy spectra. The simulated pulse height distributions were summed up for each energy bin in the neutron energy range between 1 MeV and 15 MeV in order to obtain better counting statistics. The unfolded results for monoenergetic neutron sources obtained by a first order of Tikhonov regularization and non-linear neural network show very good agreement with the reference data while the evaluated spectra of neutron sources continuous in energy follow the trend of the reference spectra. The possible advantages of a novel spectrometer include a less number of input data for processing and a less sensitivity to the noise compared to the scintillation detector without surrounding materials.
We present a new approach to regularize the displacement field of the accelerated Demons registration algorithm. The accelerated Demons algorithm uses Gaussian smoothing to penalize oscillatory motion in the displacement fields during registration. This regularization approach is often applied and ensures a smooth deformation field. However, when registering images with discontinuities in their motion field such as from organs sliding along the chest wall, the assumption of a smooth deformation field is invalid. In this work, we propose using total variation based smoothing that is known to better retain the discontinuities in the deformation field. The proposed approach is a first step towards automatically recovering breathing induced organ motion with good accuracy.
Nema pronađenih rezultata, molimo da izmjenite uslove pretrage i pokušate ponovo!
Ova stranica koristi kolačiće da bi vam pružila najbolje iskustvo
Saznaj više