Low energy Ag ions were implanted into silicon and annealed at different temperatures in order to generate plasmonic active silicon hybrids. It was found that as the ion fluence of irradiation was increased, a monotonic decrease in the absorption spectra in the ultraviolet region occurs, due to amorphization and macrostructuring of the Si surface. At the same time, the optical spectra are characterized by a strong band after implantation presenting the contribution of the surface plasmon resonance (SPR) of Ag nanoparticles. After heat treatment at 500 and 600?C, the SPR peak shifts to lower wavelengths, as compared to as implanted samples, whereas the plasmon position shifts to higher wavelengths for annealing at 700?C. This observation can be explained by either an out-diffusion of Ag or by stress relaxation and recrystallization of silicon.
This study deals with estimation of the surface free energy of thin films of polyaniline doped with phosphoric acid, by measuring contact angles. Synthesis of polyaniline (PANI) with phosphoric acid (PA) was performed at room temperature of 20°C, and at 0°C. Thin films were obtained by means of a spin coater, applying the synthetized mixture on a glass substrate. By measuring the contact angle, first between ethylene glycol and a film and then between distilled water and a film, we thus calculated the polar, dispersion and total surface free energy. It was proved and demonstrated that the surface free energy depends on the temperature at which the solution (from which the thin films are obtained later) was synthesized.
This paper presents the process of obtaining thin films of polymer polyaniline that has been doped directly in the production process. Samples of thin films were obtained using a rotating disk method at different speeds. Polyaniline synthesis (PANI) was performed at 0°C and room temperature of 20°C. Doping was made with hydrochloric acid (PANI-HCl). We have shown what were the important factors that had influence on obtaining reproducible patterns of about the same characteristics. As indicators of these properties we measured electrical resistance, on the basis of which was calculated specific electrical conductivity of the obtained samples of thin films of polyaniline from different series of production.
Nema pronađenih rezultata, molimo da izmjenite uslove pretrage i pokušate ponovo!
Ova stranica koristi kolačiće da bi vam pružila najbolje iskustvo
Saznaj više