Encapsulation can be defined as a process of entrapping one substance within another substance producing particles with diameters of a few nm to a few mm. The entrapped material is usually a liquid, but may be a solid or a gas. The main reason of using encapsulation is the fact that some nutrients do not remain in the food for a significant amount of time or may react with the other food components causing undesirable effects. It is possible to use micro- and nanoencapsulation techniques. The first one, microencapsulation, is a technology that can improve the retention time of the nutrient in the food and allow controlled release at specific times, during food consumption or in the intestinal gut (microencapsulation of vitamin). Nanoencapsulation has the potential to protect sensitive bioactive food ingredients from unfavourable environmental conditions, enhance solubilisation, improve taste and odour masking, and enhance bioavailability of poorly absorbable function ingredients. In this review, some relevant aspects of encapsulation methodologies, coating materials and their uses in food technology were discussed.
Today nanotechnology has become a top research field in the world. The present review covers classification and different applications of nanomaterials including catalysis, water treatment, sensors, energy storage and nanomedicine, as well as their positive and negative impacts on the environment. Increased attention needs to be directed towards the new nanomaterials because the development of knowledge of these nanoparticles is still in its infancy. Nanoparticles are ultra-small particles with exceptional properties, but some nanoparticles and nanomaterials also exhibit harmful properties. This is the reason why we must continue to study them and their potentially damaging effects.
The problem of environmental pollution is more expressed and more present by the development of the industry and the growth of the human population. Pollution of natural and wastewater is most often due to the release of heavy metals into watercourses. The greatest challenge for researchers is choosing the right biomass from a large number of low-cost biomaterials, and availability and price are very important selection factors. Microbial biomass, forestry waste and agroindustrial complexes are most frequently examined, as well as various macromolecules of natural origin. In this paper, barley straw that arises as agricultural waste product in barley production in Bosnia and Herzegovina, was used as a biosorbent. In the experimental part, physical and chemical characterization of barley straw was performed, after which the efficiency of removing Cd(II) and Ni(II) from aqueous solutions, using barley straw, and the influence of process parameters (pH value of aqueous solution, biosorbent size, interaction of metal ions) on the biosorption capacity were tested. It can be concluded that barley straw has good adsoption characteristics for the use as a low-cost natural sorbent for the removal of heavy metals from water.
In this paper, two different groups of liquid soaps were prepared. The first group of samples consisted of anionic surfactant (SLES), amphoteric surfactant (BETAIN) and nonionic surfactant (DEA). The second set of samples consisted of anionic surfactant and two nonionic surfactants. The aim of this work is to investigate the influence of the type of surfactant as well as the mass fraction of surfactants on the physicochemical properties of liquid soap. The surface tension, electrical conductivity and density for different concentrations of all examined type of surfactants have been determined as well as the critical micelle concentration (CMC). Moreover, the studies have shown that by increasing concentrations of zwitterionic (amphoteric) surfactant, and by decreasing concentration of nonionic surfactant, a mild decrease in pH value and viscosity increase occurred. In contrast, with increasing polyglycoside concentrations and decreasing concentration of DEA, a mild increase in pH but a decrease in viscosity was observed. In order to monitor the stability of the liquid soaps obtained, the appearance, color and odor were observed at three different temperatures at +4°C, room temperature and at + 40°C, in the dark and under UV light during the three months.
In this study, concentrations of lead Pb, cadmium Cd and arsenic As were tested in 177 samples of fresh vegetables produced in the area of Zenica. This locality is exposed to the strong influence of high emissions of various pollutants primarily originating from metallurgical and thermal power plants, but also from local heating plants. The accumulation of heavy metals is followed by the types of vegetables: tuber and root, bulb, leaf, fruiting and legume from the group of fruiting vegetables. Preparation of samples was done with microwave digestion. The concentration of the selected metals in solutions after digestion was determined on Induced coupled plasma mass spectrometry (ICP-MS). The percentage participation of contents Pb, Cd and As, either higher or lower than the maximum allowable amount prescribed by the applicable law, was calculated in all 177 samples. The results showed that different groups of vegetables have different ability to adopt and accumulate heavy metals. The largest number of samples containing Pb content above the maximum level (ML) was in the group of leaf vegetables, then in the roots and finally in bulb groups. Cd was at the very limit with the maximum level in the parsley sample, while all other tested samples were in compliance with the applicable regulations. Two of the tested samples of the parsley leaves group had an increased content of As according to the legal regulations.
Summary The term "nano" refers to nano particle size from 1 to 100 nanometers. The term "nanotechnology" was first introduced by Norio Taniguchi in 1974. Nanotechnology may be used to improve the taste and texture of food and for the production of packaging that maintain fresh product. The primary function of packaging is to maintain the quality and safety of products during transport and storage period, as well as to extend its viability by preventing unwanted effect agents such as microorganisms, chemical contaminants, oxygen, moisture and light. The aim of this paper is to point out the achievements of nanotechnology in terms of food packaging with an overview of polymers that are commonly used in food packaging, as well as strategies to improve the physical properties of polymers, including mechanical strength, thermal stability and barrier to gases. By studing of recently published literature, it was clear that nanomaterials such as nano polymers are trying to replace conventional materials in food packaging. Nanosensors can be used to prove the presence of contaminants, microtoxins and microorganisms in food.
My doctoral activity deals with oxidative photocatalysis. This is based on the use of photosensitive materials, it employes molecular oxygen as oxidant and it operates under mild temperature and pressure conditions. In particular, I worked on the preparation and characterization of photocatalytic heterogeneous systems containing the decatungstate anion W10O324- or the complex Fe(III) meso-tetrakis (2,6-dichlorophenyl) porphyrin. The photocatalytic properties of these photocatalysts were evaluated in the selective oxidation of aliphatic alcohols. The chosen polyoxoanion and porphyrin have many similarities because both of them absorb in the near UV (λ > 300 nm) and their primary photochemical processes involve the reduction of the metal centre (tungsten or iron), the simultaneous oxidation of the alcohol and the closure of photocatalytic cycle by molecular oxygen. The (nBu4N)4W10O32 was incorporated into silica matrix by sol-gel procedure and two heterogeneous systems were obtained with loadings of 10% and 30%. Their photocatalytic properties were compared in the oxidation of primary and secondary aliphatic alcohols (1-pentanol, 2-pentanol, 3-pentanol, 1-heptanol, 4-heptanol, 2,6-dimethyl-4-heptanol). Photoexcitation (λ > 300 nm) led to the selective conversion of alcohols to the corresponding carbonylic products, with a mass balance higher than 90%. The system with 10% of loading, which is characterized by a pronounced micro- and mesoporous structure, favored the selective adsorption of primary aliphatic alcohols with respect to the homologous secondary compounds, so allowing the reaction between the photoexcited decatungstate and the less hindered OH group. The system with loading of 30% was less selective; that is attributed to its lower porosity and to the fact that part of the immobilized decatungstate was not caged inside silica but weakly adsorbed on its surface and, therefore, easily accessible to all substrates. Photoexcitation of Na4W10O32 dissolved in water led to the formation of OH• radicals which, in turn, were able to oxidize glycerol. This substrate was chosen as a model of polyfunctional alcohol and because its selective transformation is a process of great industrial interest. While the photocatalytic process in solution was scarcely selective, incorporation of Na4W10O32 in a silica matrix provided a heterogeneous system with good selectivity and stability: 90% of the products were carbonylic compounds and CO2 was formed only in negligible amounts. The surface played a fundamental role, favoring adsorption of glycerol, increasing its local concentration near the decatungstate and, thus, facilitating its reaction with the photogenerated OH• radicals. Iron (III) meso-tetrakis (2,6- dichlorophenyl)porphyrin, properly silanized, was linked covalently on the surface of a mesoporous MCM-41 material. The possible effects of the morphology of the solid support on the selectivity of the photooxidation of 1,4-pentandiol were considered. The mesoporous photocatalyst, due to its large surface area, is able to disperse the iron porhyrin. The diol coordinates to iron, but contrary to what occurs in solution, can not act as a bridge between two complexes. This prevents the formation of inactive oligomers. The photocatalytic system presented a good selectivity in the oxidation of the diol in the primary position, with accumulation of 4-hydroxypentanal. It is noteworthy that there is no evidence of formation of products of further oxidation.
The fluoride element is found in the environment and constitutes 0.06 – 0.09 % of the earth’s crust. Fluoride is not found naturally in the air in large quantities. Average concentration of fluoride in air are in the magnitude of 0.5 ng/m3.[1] Fluoride is found more frequently in different sources of water but with higher concentrations in groundwater due to the presence of fluoride-bearing minerals. Average fluoride concentrations in see water are approximately 1.3 mgL-1. Water is vitally important to every aspect of our lives. Water is a risk because of the possible input and transmission of infectious pathogens and parasitic diseases. We use clean water to drink, grow crops for food and operate factories. The most common pollutants in water are chemicals (pesticides, phenols, heavy metals and bacteria). [2] According to the US Environmental Protection Agency, there are 6 groups which cause contamination of drinking water: microorganisms, disinfectants, disinfection byproducts, inorganic chemicals, organic chemicals, radioactive substances. This chapter concerns the importance of continuously monitoring of fluoride and chloride in drinking water by using a fluoride (F-ISE) and chloride (Cl-ISE) ion-selective electrodes. Disinfectants that are added to reduce the number of microorganisms, as well as disinfection byproducts can cause a series of disorders in body (anaemia, impaired function of liver, kidneys, nervous system). Chemical disinfection is economically most favourable when it comes to processing large amounts of water, for the preparation of drinking water and wastewater treatment. That is why this type of disinfection is used almost exclusively in Bosnia and Herzegovina. Chlorine is one of the most widely used disinfectants. Water monitoring information helps us to control pollution level. In this context, our work concerns the determination of fluoride in spring waters from different villages in Tuzla's Canton in Bosnia and Herzegovina, and chloride in drinking tap water from Tuzla and Gradacac as well as one sample of bottled water. Spring water sample from “Tarevcica” is designed by SW1, from “Zatoca” by SW2, from “Sedam vrela” by SW3 and “Toplica” by SW4 while a tap water from Tuzla by TW and tap water from Gradacac by GW and bottled water by FW. The development of potentiometric ion-selective electrode has a wide range of applications in determining ions in water and other mediums. These electrodes are relatively free from interferences and provide a rapid, convenient and non-destructive means of quantitatively determining numerous important anions and cations. [3] The use of ion-selective electrodes
Two heterogeneous photocatalysts have been prepared by entrapment of [nBu(4)N](4)W(10)O(32) in a silica matrix, through a sol-gel procedure: SiO(2)/W30% and SiO(2)/W10% with 30% and 10% of decatungstate, respectively. They are characterized by the presence of micropores of about 7 A and 15 A and mesopores of about 25 A. Due to different preparation procedures, SiO(2)/W10% presents a more remarkable porous network than SiO(2)/W30%. The morphological features of SiO(2)/W30% and SiO(2)/W10% differ from those of their parent material SiO(2)/W0%, indicating that incorporation of the decatungstate induces a significant modification of the porous texture of the siliceous material. These photocatalysts demonstrate good stability in the oxygen-assisted photooxidation of 1-pentanol and 3-pentanol, which have been chosen as models of primary and secondary aliphatic alcohols. In particular, photoexcitation (lambda > 290 nm, 25 degrees C, 760 torr of O(2)) leads to conversion of these two substrates to pentanal or 3-pentanone, with a mass balance of about 90%. There is a strong effect of the solid support on the reactivity of the two alcoholic substrates. In particular, oxidation of 1-pentanol with SiO(2)/W10% is about four times faster than with [nBu(4)N](4)W(10)O(32) in homogeneous solution. Preferential adsorption phenomena, due to the hydrophilic character of silica explain the photocatalytic properties of the two heterogeneous systems, because adsorption favours the contact between the photoexcited decatungstate and the primary OH group of 1-pentanol. Moreover, some kind of shape selectivity, due to the microporous structure of the investigated materials, likely contributes to control the conversion yields.
Nema pronađenih rezultata, molimo da izmjenite uslove pretrage i pokušate ponovo!
Ova stranica koristi kolačiće da bi vam pružila najbolje iskustvo
Saznaj više