Background and objective In recent years, the complex interplay between systemic health and oral well-being has emerged as a focal point for researchers and healthcare practitioners. Among the several important connections, the convergence of Type 2 Diabetes Mellitus (T2DM), dyslipidemia, chronic periodontitis, and peripheral blood mononuclear cells (PBMCs) is a remarkable example. These components collectively contribute to a network of interactions that extends beyond their domains, underscoring the intricate nature of human health. In the current study, bioinformatics analysis was utilized to predict the interactomic hub genes involved in type 2 diabetes mellitus (T2DM), dyslipidemia, and periodontitis and their relationships to peripheral blood mononuclear cells (PBMC) by machine learning algorithms. Materials and Methods Gene Expression Omnibus datasets were utilized to identify the genes linked to type 2 diabetes mellitus(T2DM), dyslipidemia, and Periodontitis (GSE156993).Gene Ontology (G.O.) Enrichr, Genemania, and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways were used for analysis for identification and functionalities of hub genes. The expression of hub D.E.G.s was confirmed, and an orange machine learning tool was used to predict the hub genes. Result The decision tree, AdaBoost, and Random Forest had an A.U.C. of 0.982, 1.000, and 0.991 in the R.O.C. curve. The AdaBoost model showed an accuracy of (1.000). The findings imply that the AdaBoost model showed a good predictive value and may support the clinical evaluation and assist in accurately detecting periodontitis associated with T2DM and dyslipidemia. Moreover, the genes with p-value < 0.05 and A.U.C.>0.90, which showed excellent predictive value, were thus considered hub genes. Conclusion The hub genes and the D.E.G.s identified in the present study contribute immensely to the fundamentals of the molecular mechanisms occurring in the PBMC associated with the progression of periodontitis in the presence of T2DM and dyslipidemia. They may be considered potential biomarkers and offer novel therapeutic strategies for chronic inflammatory diseases.
Background and introduction Statisticians rank oral and lip cancer sixth in global mortality at 10.2%. Mouth opening and swallowing are challenging. Hence, most oral cancer patients only report later stages. They worry about surviving cancer and receiving therapy. Oral cancer severely affects QOL. QOL is affected by risk factors, disease site, and treatment. Using oral cancer patient questionnaires, we use light gradient Boost Tree classifiers to predict life quality. Methods DIAS records were used for 111 oral cancer patients. The European Organisation for Research and Treatment of Cancer’s QLQ-C30 and QLQ-HN43 were used to document the findings. Anyone could enroll, regardless of gender or age. The IHEC/SDC/PhD/OPATH-1954/19/TH-001 Institutional Ethical Clearance Committee approved this work. After informed consent, patients received the EORTC QLQ-C30 and QLQ-HN43 questionnaires. Surveys were in Tamil and English. Overall, QOL ratings covered several domains. We obtained patient demographics, case history, and therapy information from our DIAS (Dental Information Archival Software). Enrolled patients were monitored for at least a year. After one year, the EORTC questionnaire was retaken, and scores were recorded. This prospective analytical exploratory study at Saveetha Dental College, Chennai, India, examined QOL at diagnosis and at least 12 months after primary therapy in patients with histopathologically diagnosed oral malignancies. We measured oral cancer patients’ quality of life using data preprocessing, feature selection, and model construction. A confusion matrix was created using light gradient boosting to measure accuracy. Results Light gradient boosting predicted cancer patients’ quality of life with 96% accuracy and 0.20 log loss. Conclusion Oral surgeons and oncologists can improve planning and therapy with this prediction model.
Nema pronađenih rezultata, molimo da izmjenite uslove pretrage i pokušate ponovo!
Ova stranica koristi kolačiće da bi vam pružila najbolje iskustvo
Saznaj više