Logo
Nazad
Žarko Peruničić, Ivana Lalatović, Lemana Spahić, Adna Ašić, L. G. Pokvic, A. Badnjević
0 9. 12. 2024.

Enhancing mechanical ventilator reliability through machine learning based predictive maintenance

With the advancement of Artificial Intelligence (AI), clinical engineering has witnessed transformative opportunities, enabling predictive maintenance of medical devices, optimization of healthcare workflows, and personalized patient care. Respiratory equipment plays a vital role in modern healthcare, supporting patients with compromised or impaired respiratory capacities. However, ensuring the reliability and safety of these devices is crucial to prevent adverse events and ensure patient well-being. This study aims to explore machine learning techniques to enhance predictive maintenance for mechanical ventilators. The dataset used for this study contains information about 1350 entries of mechanical ventilators, made by 15 different manufacturers and available in 30 distinct models. Different machine learning algorithms, including Logistic Regression, Decision Trees, Random Forest, K-nearest Neighbors, Support Vector Machines, Naive Bayes, and XG Boost are developed and tested in terms of their performance in predicting mechanical ventilator failures. The ensemble methods, particularly Random Forest and XGBoost, have proven to be more adept at handling the complexities of the dataset. The Decision Tree and Random Forest models both showed remarkable accuracies of approximately 0.993, while K-Nearest Neighbors (KNN) performed exceptionally with near perfect accuracy. Adoption of automated systems based on artificial intelligence will help in overcoming challenges of ensuring quality of MDs that are already being used in healthcare institutions. Implementing machine learning-based predictive maintenance can significantly enhance the reliability of mechanical ventilators in healthcare settings.

Pretplatite se na novosti o BH Akademskom Imeniku

Ova stranica koristi kolačiće da bi vam pružila najbolje iskustvo

Saznaj više