Advancement of post-market surveillance of medical devices leveraging artificial intelligence: Infusion pumps case study
Analysis of data from incident registries such as MAUDE has identified the need to improve surveillance and maintenance strategies for infusion pumps to enhance patient and healthcare staff safety. The ultimate goal is to enhance infusion pump management strategies in healthcare facilities, thus transforming the current reactive approach to infusion pump management into a proactive and predictive one. This study utilized real data collected from 2015 to 2021 through the inspection of infusion pumps in Bosnia and Herzegovina. Inspections were conducted by the national laboratory in accordance with the Legal Metrology Framework, accredited to ISO 17020 standard. Out of 988 samples, 790 were used for model training, while 198 samples were set aside for validation (20% of the dataset). Various machine learning algorithms for binary classification of samples (pass/fail status) were considered, including Logistic Regression, Decision Tree, Random Forest, Naive Bayes, and Support Vector Machine. These algorithms were chosen for their ability to handle large datasets and potential for high prediction accuracy. Through detailed analysis of the achieved results, it was found that all applied machine learning methods yielded satisfactory results, with accuracy ranging from 0.98% to 1.0%, precision from 0.99% to 1%, sensitivity from 0.98% to 1.0%, and specificity from 0.87% to 1.0%. However, Decision Tree and Random Forest methods proved to be the best, both due to their maximum achieved values of accuracy, precision, sensitivity, and specificity, and due to result interpretability. It has been established that machine learning methods are capable of identifying potential issues before they become critical, thus playing a crucial role in predicting the performance of infusion pumps, potentially enhancing the safety, reliability, and efficiency of healthcare delivery. Further research is needed to explore the potential application of machine learning algorithms in various healthcare domains and to address practical issues related to the implementation of these algorithms in real clinical settings.