Nigella sativa is a herb that has been used for centuries to treat various ailments, including infectious diseases. The aim of this work was to show in laboratory conditions the influence of different temperature regimes and methods of storage of Nigella Sativa oils on their physicochemical properties and microbiological stability. Analyzes have established that the temperature and method of storage have a significant influence on the change in the quality of the oil, especially when it comes to the total acidity of the oil and the peroxide value, where the values increased with the time of storage. The lowest obtained value for the peroxide number was at the first measurement, Pb = 9.99, which meets the prescribed standards for safe use, then the highest obtained value was 34.47 for the sample that was constantly exposed to the sun in a bright bottle. Also, the values of the iodine number increased with time, where the lowest value obtained was 14.56, and the highest was 102.48. Therefore, it is extremely important that the oil is stored in suitable packaging in dark glass bottles, and that it is protected from direct sunlight and high temperatures.
Physical chemical milk is an emulsion of milk fat in an aqueous solution of proteins, milk sugar and mineral salts. The high molar conductivity of goat milk samples compared to cow's milk indicates a high content of mineral substances. That goat milk is rich in total proteins is also indicated by the protein content in the samples, which are higher than the cow's milk samples. However, higher fat content was recorded in cow's milk samples, which also results in higher surface tension of cow's milk. The freezing point and refractive index of goat milk are higher compared to literature data and cow milk samples. The acidity of goat's milk comes from the acidic properties of casein, citrate, phosphate, etc. it is lower than cow's milk and is in accordance with literature data. The viscosity of pasteurized goat's milk at all temperatures is also higher than that of cow's milk.
Medicinal plants have become an increasing subject of interest worldwide due to the large amount of biologically active substances that have potential beneficial health properties. One of the more interesting popular medicinal plants is hawthorn (Crataegusspp.), a deciduous branched shrub that is increasingly used for health purposes. Various parts of this plant, including berries, flowers and leaves, are rich in nutrients and beneficial bioactive compounds that are effective in the treatment of numerous diseases. Honey is a natural sweetener produced by bees from plant secretions. Known for its nutritional and medicinal values, it gives strength to the body, which is why it is indispensable in the human diet. The combination of these two ingredients represents a significant source of vitamins and minerals in daily use, but also for use in various pharmaceutical and medical purpose. Taking into account all of the above, the aim of the work is to test samples of the mixture of honey and hawthorn in different proportions and determine the physical and chemical characteristics: pH value, electrical conductivity, refractive index, viscosity, water activity, HMF, DPPH. Based on the analysis, appropriate conclusions will be drawn and more information will be obtained about their quality and possible use as a food supplement. On the basis of the conducted analyses, it can be concluded that the parameter values are within the permitted limits defined by the Rulebook (Official Gazette Bosnia and Herzegovina No. 37/09). The analysis of the mentioned parameters showed that the chemical composition of the sample plays a major role in the value of the measurement results, and that Sample III has the best antioxidant properties. KEYWORDS:physicochemical characteristics; honey; hawthorn (Crataegus spp.);mixture; food suplement
pH represents the concentration of free H+ in pine needles extracts (PNE) and is therefore an important initial parameter in quality control. Electrical conductivity and pH of samples of fresh and stored for 20 days of PNE with black cumin oil and olive oil had values of 0.00 due to the encapsulation of water molecules, pH and electrical conduction was not possible. The pH of the other samples was in a weakly acidic environment because the pH of natural pine needles is 3.8. Electrical conductivity values in all samples except pine needle extract and honey increased during storage. By monitoring the parameters of pH and electrical conductivity in the quality control of PNE, it gives us a significant insight into the physical state of the phases and the way of storage.
The natural plant Cornus mas, sometimes called Cornelian cherry, has been known since ancient times and the fruit is used for various purposes. Cornus mas gives healthy fruits without the use of chemical protection, which are used as healthy, tasty and medicinal food. Cornus mas fruits can be used for eating fresh or in the form of numerous processed products: marmalade, jam, sweet, compote, syrup, juice, fruit yogurt, liqueur, wine and brandy. Due to its antioxidant, antiallergic, antimicrobial and antihistamine properties, it is increasingly used as a dietary supplement, as well as for medical purposes. Taking into account all the above, the aim of this paper is to examine samples of a mixture of honey and fresh wild Cornelian cherry, as well as a sample of honey and Cornelian cherry and determine the physical - chemical parameters: electrical conductivity, pH value, vitamin C content, HMF (hydroxy methyl furfural), as well as individual heavy metals such as iron, cadmium, lead, zinc, copper. Based on the obtained results, appropriate conclusions will be given and the possibility of registering these products as food supplements will be determined. Based on the performed analyzes, it was shown that the sample of honey and Cornelian cherry mixture had the highest pH value and electrical conductivity, and that the honey sample had the lowest value. Also, the highest value of water activity had the sample of a mixture of honey and Cornelian cherry, while the highest content of hydroxymethylfurfural had the content of Cornelian cherry. The analysis showed the absence of manganese (Mn), cadmium (Cd) and lead (Pb) in all samples, while it was shown that the highest content of Cu and Zn has the sample of Cornelian cherry 2.665 mg/kg Cu and 14.41 mg/kg Zn, followed by a mixture of Cornelian cherry and honey Cu 2.778 mg/kg, Zn 14.670 mg/kg, while the honey sample has the highest Fe content of 16.72 mg/kg. This shows that the samples are rich in zinc, iron and copper, and that they are a good source for those minerals that could meet daily needs.
During the last few years, we have witnessed more frequent floods affecting the northeastern part of Bosnia and Herzegovina, the valley of the Spreca River. Flooded soil has undergone various changes, in terms of numerous deficiencies and heavy metal contamination, where such soil represents a great danger both for people and animals. Therefore, in this paper the physicochemical analysis of soil and degree of pollution is determined. The aim of soil sampling and analysis is to determine its status after water withdrawal, in terms of nutrient supply, and to determine possible chemical pollution. Based on the results obtained, agricultural producers will receive recommendations regarding restoration of production on these areas, the choice of cultivated culture, corrective measures or remediation of these areas. As part of the analysis, hygroscopic moisture, acid-base soil status, oxidoreduction potential, organic matter content, carbonate content and heavy metals content were determined. Based on the performed analyzes, the soil was shown to be of neutral character (determined in 1M KCl), and weakly alkaline (determined in distilled H2O) with predominantly reducing condition prevailing in the soil. The conducted analyzes have shown that the soil is very poor in humus, and that the heavy metals content is within the limit values determined by the Rulebook on Determination of Allowed Quantities of Harmful and Dangerous Substances in Soil and Method of Testing there of (“Official Gazette of Federation of Bosnia and Herzegovina”, number 52/09). Therefore, from the aspect of the pollution degree, the soil from this plot belongs to the first class when it comes to iron, manganese, cadmium and lead, to the second class when it comes to zinc, and the third class when it comes to copper.
During the last few years, we have witnessed more frequent floods affecting the northeastern part of Bosnia and Herzegovina, the valley of the Spreca River. Flooded soil has undergone various changes, in terms of numerous deficiencies and heavy metal contamination, where such soil represents a great danger both for people and animals. Therefore, in this paper the physicochemical analysis of soil and degree of pollution is determined. The aim of soil sampling and analysis is to determine its status after water withdrawal, in terms of nutrient supply, and to determine possible chemical pollution. Based on the results obtained, agricultural producers will receive recommendations regarding restoration of production on these areas, the choice of cultivated culture, corrective measures or remediation of these areas. As part of the analysis, hygroscopic moisture, acid-base soil status, oxidoreduction potential, organic matter content, carbonate content and heavy metals content were determined. Based on the performed analyzes, the soil was shown to be of neutral character (determined in 1M KCl), and weakly alkaline (determined in distilled H2O) with predominantly reducing condition prevailing in the soil. The conducted analyzes have shown that the soil is very poor in humus, and that the heavy metals content is within the limit values determined by the Rulebook on Determination of Allowed Quantities of Harmful and Dangerous Substances in Soil and Method of Testing there of (“Official Gazette of Federation of Bosnia and Herzegovina”, number 52/09). Therefore, from the aspect of the pollution degree, the soil from this plot belongs to the first class when it comes to iron, manganese, cadmium and lead, to the second class when it comes to zinc, and the third class when it comes to copper.
Nema pronađenih rezultata, molimo da izmjenite uslove pretrage i pokušate ponovo!
Ova stranica koristi kolačiće da bi vam pružila najbolje iskustvo
Saznaj više