Logo

Publikacije (39)

Nazad

Paediatric and geriatric populations, as well as other special patient populations with swallowing problems, require patient-tai-lored dosage forms. One promising dosage form for these specific populations is orodispersible films. When preparing orodispersible films using sodium carboxymethyl cellulose as the film-forming polymer and glycerine as the plasticizer, it is essential to determine the optimal mixing time and mixing speed of the casting solution to achieve the desired transparency/opacity of the orodispersible films. In this paper, the primary focus is on mixing time and mixing speed, and determining how these two parameters can influence optical characteristics. All tested parameters are supported by FTIR anal - ysis. The obtained results show that either a mixing speed of 7000 rpm on a high-shear mixer for 15 min or a mixing speed of 9000 rpm for 5 min can produce films with optimal optical characteristics.

Abstract Four natural sweeteners (sucrose, xylitol, fructose, and isomalt) were selected to examine the influence of their qualities and amounts on the characteristics of orodispersible films. Sodium carboxymethylcellulose (2% w/w) was utilized as the film-forming polymer and 1% w/w glycerol as a plasticizer. Films were produced through the solvent casting method, rendering them suitable for convenient application in community or hospital pharmacy settings. The physicochemical and optical properties of the films were analyzed, and Fourier-transform infrared analysis was carried out. All films exhibited acceptable disintegration time, uniformity of mass, thickness, and optical characteristics, with significant dependence (p<0.05) on both sweetener type and quantity. Disintegration time varied based on the employed method, as well as the characteristics and amount of sweetener. Additionally, all films maintained pH values within the oral cavity range, suggesting no potential irritancy upon administration. Fourier-transform infrared analysis confirmed the formation of the film and demonstrated compatibility between its components.

Although solid oral dosage forms present majority of commonly prescribed drugs, some patients struggle with ingesting them (Awad et al., 2021). Amongst those, a very significant group is the pediatric population. On the other side, questions concerning dosage consistency arise when it comes to liquid oral preparations, particularly for suspensions (Gupta et al., 2021). To avoid the limitations of conventional oral dosage forms, orodispersible films (ODFs) were developed as a promising, patient-tailored therapeutic alternative. After the administration, ODFs are swallowed naturally with saliva, and there is no need for additional water (Yadav et al., 2021). Furthermore, in terms of the pediatric population, the product not only has to be easy to swallow, but it also has to be visually appealing. Therefore, a lot of attention is dedicated to the visual appearance of ODFs, including their color and transparency or opacity (Zamanian et al., 2021). One of the methods used to produce ODFs is the solvent casting of polymer solution/dispersion. The aim of our study was to determine whether high shear mixer heads have an influence on the optical characteristics and disintegration time of the obtained ODFs.

OBJECTIVE To examine the influence of vehicles on the stability of extemporaneous suspensions of proton pump inhibitors (PPIs), to single out the formulation most suitable for children, providing appropriate evidence and arguments. METHODS A review was performed of data identified from Medline, Embase, Science Direct, as well as public digital archive PubMed, including reference texts, related to the field of stability testing of extemporaneous PPI suspensions. RESULTS Fourteen selected formulations of extemporaneous suspensions are presented and discussed. Depending on the vehicle and its composition, which was analyzed and explained in detail, the suspensions had various beyond-use dates (BUDs). CONCLUSIONS Selected vehicles and the process of preparation had great influence on the stability of extemporaneous PPI suspensions. The suspension with the longest BUD has been singled out, which is especially suitable for use in newborns. Because an explanation is provided for the influence of individual vehicle components on the stability of the mentioned suspensions, this can aid not only in the selection of an adequate formulation, but also in the development of new ones, which will be suited to individual patients.

The aim of the present study is to improve the solubility and antimicrobial activity of 3-(3-(2-chlorophenyl)prop-2-enoyl)-4-hydroxycoumarin by formulating its inclusion complexes with 2-hydroxypropyl-β-cyclodextrin in solution and in solid state. The phase solubility study was used to investigate the interactions between 3-(3-(2-chlorophenyl)prop-2-enoyl)-4-hydroxycoumarin and 2-hydroxypropyl-β-cyclodextrin and to estimate the molar ratio between them. The structural characterization of binary systems (prepared by physical mixing, kneading and solvent evaporation methods) was analysed using the FTIR-ATM spectroscopy. The antimicrobial activity of 3-(3-(2-chlorophenyl)prop-2-enoyl)-4-hydroxycoumarin and inclusion complexes prepared by solvent evaporation method was tested by the diffusion and dilution methods on various strains of microorganisms. The results of phase solubility studies showed that 3-(3-(2-chlorophenyl)prop-2-enoyl)-4-hydroxycoumarin formed the inclusion complexes with 2-hydroxypropyl-β-cyclodextrin of AP type. The solubility of 3-(3-(2-chlorophenyl)prop-2-enoyl)-4-hydroxycoumarin was increased 64.05-fold with 50% w/w of 2-hydroxypropyl-β-cyclodextrin at 37 o C. The inclusion complexes in solid state, prepared by the solvent evaporation method, showed higher solubility in purified water and in phosphate buffer solutions in comparison with 3-(3-(2-chlorophenyl)prop-2-enoyl)-4-hydroxycoumarin alone. The inclusion complexes prepared by solvent evaporation method showed higher activity on Bacillus subtilis and Staphylococcus aureus compared to uncomplexed 3-(3-(2-chlorophenyl)prop-2-enoyl)-4-hydroxycoumarin due to improved aqueous solubility, thus increasing the amount of available 3-(3-(2-chlorophenyl)prop-2-enoyl)-4-hydroxycoumarin that crosses the bacterial membrane.

Dimenhydrinate (DMH) is used for the prevention and treatment of nausea, vomiting, dizziness and vertigo associated with motion sickness in a dose of 50 mg 1. It’s made of two drugs in a form of salt, diphenhydramine and 8-chlorotheophylline which synergically decrease motion caused neural excitation 2. DMH is classified as a slightly soluble drug and it belongs to class II of BCS classification as a drug with low solubility and high permeability 3. Cyclodextrins (CDs) are cyclic oligosaccharides formed by α-1,4-linked glucose units with a hydrophilic outer surface and a lipophilic central cavity. Formation of inclusion complex by incorporating a drug in the central CD cavity provides improvement of physicochemical properties without molecular modifications. Solubility and dissolution rate of poorly water-soluble drugs can be increased 4. Aqueous solubility of natural CDs is limited due to their tendency to form H-bonded associations. However, due to multiple reactive hydroxyl groups, their functionality can be greatly increased by chemical modification 5. CDs’ substituted derivates can overcome poor solubility issues and enhance bioavailability. Hydroxypropylβ-CD (HP-β-CD) has good inclusion ability, high water solubility and it’s safe for intravenous and oral administration 6. Stability constant (Ks) and complexation efficacy (CE) are important for assessing the binding characteristics of the drug and CD. They can be determined by the phase solubility studies where the change of the drug solubility is corresponding to the concentration of CD 7. Linear (AL) type of the curve implies that one molecule of the drug forms inclusion complex with one molecule of the CD. Apparent stability constant K1:1 can be calculated from the following equation:

Microneedles (MNs) represent the concept of attractive, minimally invasive puncture devices of micron-sized dimensions that penetrate the skin painlessly and thus facilitate the transdermal administration of a wide range of active substances. MNs have been manufactured by a variety of production technologies, from a range of materials, but most of these manufacturing methods are time-consuming and expensive for screening new designs and making any modifications. Additive manufacturing (AM) has become one of the most revolutionary tools in the pharmaceutical field, with its unique ability to manufacture personalized dosage forms and patient-specific medical devices such as MNs. This review aims to summarize various 3D printing technologies that can produce MNs from digital models in a single step, including a survey on their benefits and drawbacks. In addition, this paper highlights current research in the field of 3D printed MN-assisted transdermal drug delivery systems and analyzes parameters affecting the mechanical properties of 3D printed MNs. The current regulatory framework associated with 3D printed MNs as well as different methods for the analysis and evaluation of 3D printed MN properties are outlined.

© Author(s) (or their employer(s)) 2021. No commercial reuse. See rights and permissions. Published by BMJ. We come from Bosnia and Herzegovina, a small country in western Balkans. Our Faculty of Pharmacy at the University of Sarajevo was opened in 1973, but from then on there was no kind of online teaching. So when the COVID-19 pandemic broke out, and when the university decided to stop all kinds of ‘inclass’ teaching (12 March 2020), we were faced with something new. We work at the Department of Pharmaceutical Technology, where we teach regular courses on ‘Drug Formulation’ and ‘Industrial Pharmacy’. Students take classes in these subjects in the seventh, eighth and ninth semesters. The exercises are practical and last several hours. On 25 March 2020, classes in the lecture hall were suspended until further notice by the decision of the Senate of the University of Sarajevo, and then we realised that we must embark on the adventure of organising online classes. We carried out short research on available online teaching platforms to find basic information on the platform’s capabilities, identify their advantages and disadvantages, and check their commercial prices. We studied the following platforms for online courses: Google Meet, Adobe Connect, Zoom and BigBlueButton, and the following platforms for online examinations: Exam. net, Virtualx, Google Forms, Skillsbook, Papershala, Edbase, Kaldin and TCExam. After examining the possibilities of the available online teaching platforms, we agreed that Zoom and Google Meet provide the best results for running online courses. Adobe Connect, Blackboard Collaborate and BigBlueButton work on the same principle, but professional versions of these platforms were quite unaffordable to us. The results for the online examination platforms are summarised in table 1. Given the security and price of the platforms, we concluded that Exam. net currently meets our criteria, but that it would be necessary to use two platforms simultaneously during the examination, one of which would allow an established video connection with students during the examination (eg, a combination of Exam. net and Zoom). Students accessed the examination platform from their laptop while simultaneously established a video connection with the teacher on their mobile device. At the end of the semester, we conducted an online survey in which 60 (70.93%) of 86 students participated, and for 98.4% of the students this was their first online learning experience. Although it is assumed that current students (digital natives) have adequate information and communications technology competence, they differ in their computer and information literacy as they come from different socioeconomic backgrounds. Of the students, 21.3% had technical difficulties (ie, unstable connection). One of them said she/he has problems with misunderstanding from parents who required help with housework at the time of the lecture because she/he comes from the countryside. Of the students, 75% were satisfied with the conducted online classes at our department. Onethird found it easier to follow theoretical lectures online. Here are some comments from the students:

Microneedles (MNs) have been manufactured using a variety of methods from a range of materials, but most of them are expensive and time-consuming for screening new designs and making any modifications. Therefore, stereolithography (SLA) has emerged as a promising approach for MN fabrication due to its numerous advantages, including simplicity, low cost, and the ability to manufacture complex geometrical products at any time, including modifications to the original designs. This work aimed to print MNs using SLA technology and investigate the effects of post-printing curing conditions on the mechanical properties of 3D-printed MNs. Solid MNs were designed using CAD software and printed with grey resin (Formlabs, UK) using Form 3 printer (Formlabs, UK). MNs dimensions were 1.2 × 0.4 × 0.05 mm, arranged in 6 rows and 6 columns on a 10 × 10 mm baseplate. MNs were then immersed in an isopropyl alcohol bath to remove unpolymerized resin residues and cured in a UV-A heated chamber (Formlabs, UK). In total, nine samples were taken for each combination of curing temperature (35°C, 50°C, and 70°C) and curing time (5 min, 20 min, and 60 min). Fracture tests were conducted using a hardness apparatus TB24 (Erweka, Germany). MNs were placed on the moving probe of the machine and compressed until fracture. The optimization of the SLA process parameters for improving the strength of MNs was performed using the Taguchi method. The design of experiments was carried out based on the Taguchi L9 orthogonal array. Experimental results showed that the curing temperature has a significant influence on MN strength improvements. Improvement of the MN strength can be achieved by increasing the curing temperature and curing time.

Nema pronađenih rezultata, molimo da izmjenite uslove pretrage i pokušate ponovo!

Pretplatite se na novosti o BH Akademskom Imeniku

Ova stranica koristi kolačiće da bi vam pružila najbolje iskustvo

Saznaj više