Logo

Institucija

University of Utah
Associate Professor

Zlatan Akšamija is an associate professor of materials science and engineering who studies heat transport and dissipation in nanostructured materials and devices. He received his B.S. in Computer Engineering (Summa Cum Laude, James Honors Scholar, Mathematics Minor) in 2003, and his M.S. and Ph.D. in Electrical Engineering (with Computational Science and Engineering option) in 2005 and 2009, respectively, all from the University of Illinois at Urbana/Champaign. His dissertation, entitled “Thermal effects in semiconductor materials and devices,” was supported by a DOE Computational Science Graduate Fellowship (2005-2009). Zlatan was awarded an Outstanding Paper award at the EIT’07 conference and a Greg Stillman Memorial semiconductor graduate research award in 2008. From 2009 to 2013, Zlatan was a Computing Innovation Postdoctoral Fellow and an NSF CI TraCS Fellow in the ECE department at the University of Wisconsin-Madison. His research focused on semiconductor nanostructures for thermoelectric energy conversion applications, as well as numerical methods for the coupled simulation of electronic and thermal transport. In 2013, Zlatan became an Assistant Professor in the Electrical and Computer Engineering Department at the University of Massachusetts-Amherst and founded the NanoEnergy lab, where he studies nanoscale dissipation and heat transfer in 2-dimensional materials, alloys, and nanocomposites. He received the Best Paper award from IEEE Nano (2014) and a Lilly Teaching Fellowship from the UMass Institute for Teaching and Faculty Development. He was promoted to Associate Professor with tenure in 2019.

He joined the Materials Science and Engineering Department at the University of Utah in 2022 where he was an UPSTEM faculty fellow in 2023. He is currently an Career Mentoring Fellow of the American Physical Society (APS), senior member of the IEEE, and chair of the Technical and Natural Sciences section of the Bosnian-American Academy of Arts and Sciences (BHAAAS).

Heat dissipation and thermal management is a rising concern for nanoelectronic devices and threatens to curtail their adoption in integrated circuits, sensors, and energy converters. Joule heating due to dissipation in the channel region of nanoelectronic devices causes increased temperature and may lead to mobility degradation and long-term reliability issues. Here we study thermal transport and cross-plane thermal boundary conductance in a variety of “beyond graphene” 2D materials and few-layer stacks on several amorphous and crystalline substrates using a combination of first principles methods and Boltzmann transport of phonons. We employ machine learning to accelerate the discovery of 2D-substrate pairings with enhanced thermal conductance. Beyond that, we couple electronic and thermal transport to study dissipation in field effect MOS transistors and show that heat dissipation is non-uniform and that self-heating reduces mobility. We find that judicious selection of the number of layers and substrate can significantly reduce the deleterious effects of Joule heating.

Aidan Belanger, Z. Akšamija

Raman thermometry has gained immense popularity for probing the thermal properties of nanostructured materials due to its excellent spatial resolution and lack of contact error; however, it has a key weakness in its temperature resolution. In this work, we aim to improve the temperature resolution of Raman thermometry through training neural networks to track the locations, widths, and relative heights of multiple peaks at once. We find that in training a multilayer perceptron on 13 pixel values representing the Raman peak of silicon, the variance and standard deviation in thermal conductivity predictions can be reduced as compared to those resulting from the predominant method of tracking the peak location as it shifts with temperature. We expect that this work may contribute to greater accuracy of thermal measurements from non-contact Raman-based techniques and thereby improve the consensus on the thermal properties of 2D materials.

Conjugated polymers (CP) are frequently doped to modulate their transport and optical properties. Doping alters the intrinsic Gaussian density of states (DOS) by adding Coulomb energy and inducing an exponential tail. Changes in transport or optical properties are mainly tracked back to changes in DOS and carrier hopping rates. Conductivity shows a power-law like increase and the Seebeck coefficient a decrease with carrier concentration. This results in a trade-off between transport properties with doping. However, their modification with doping is still not well understood. Here we show that capture transport and optical properties of doped CPs, by developing a tight-binding Hamiltonian that includes dopant-induced energetic disorder (DID) via Coulomb interactions. We utilize perturbation theory to calculate transition rates between wavefunctions from the calculated eigenenergies and eigenfunctions. With the obtained transition rates, we solve Pauli master equation for occupational probabilities to compute transport properties of doped CPs. Additionally, we capture optical absorption features by simply simulating the joint DOS and IR absorption features via simulated AC conductivity. We anticipate our work to significantly contribute to understanding of underlying transport and optical physics of doped CPs.

S. Makumi, Aidan Belanger, Z. Akšamija

Despite their potential for miniaturization, electronic devices made of 2D materials face thermal management challenges due to their reduced dimensionality, which can limit their efficiency and lifespan. Low thermal boundary conductance (TBC) is one major limiting factor in realizing efficient heat transfer to the substrate. Due to the roughness at the interface, the adhesion of 2D materials to their substrates tend to be weak, resulting in low TBC. Therefore, to improve heat flow from the 2D material, we need to discover novel ways of increasing TBC. In this study, we have used a numerical model combined with first-principles DFPT simulations to investigate a possible method to increase TBC using an electrostatic field due to gate voltage. Our study shows that electrostatic pressure can be used to effectively enhance TBC for an interface formed by a 2D material and a rough substrate. We find that electrostatic pressure can improve TBC by more than 300 % when an electric field of 3 V/nm is applied. This is due to an improvement in the vdW spring coupling constant, which shows a more than two-fold increase when a substrate roughness of 1.6 nm and correlation length of 10.8 nm, 2D-material's bending stiffness of 1.5 eV, and adhesion energy of 0.1 $J/m^{2}$ were used. We show that TBC is enhanced more when the substrate has a large roughness and small correlation length, and the $2D$ material has a large bending stiffness. This is because a stiff 2D sheet resist bending when voltage/pressure is applied, thus causing it to press more on the roughness peaks, resulting in a tremendous increase in the coupling constants at the peaks in the atomically rough surface of the substrate. However, a flexible 2D material can easily bend to conform to the topography of the rough substrate when voltage/pressure is applied, which makes the coupling constants across the interface more uniform. Here we show that TBC is enhanced more when adhesion is weak because a weak vdW bond is easily compressed by external pressure. Therefore, our study provides valuable information that can be applied in designing electronic devices with efficient heat management by using gate voltage, substrate roughness combined with the mechanical properties.

Stefanie Haugg, S. Makumi, Sven Velten, R. Zierold, Z. Akšamija, R. Blick

[This corrects the article DOI: 10.1021/acsomega.3c08932.].

Q. Xie, J. Niroula, Nitul S. Rajput, M. Yuan, S. Luo, Kai Fu, Mohamed Fadil Isamotu, Rafid Hassan Palash, Bejoy Sikder et al.

This Letter reports the device and material investigations of enhancement-mode p-GaN-gate AlGaN/GaN high electron mobility transistors (HEMTs) for Venus exploration and other harsh environment applications. The GaN transistor in this work was subjected to prolonged exposure (11 days) in a simulated Venus environment (460 °C, 94 bar, complete chemical environment including CO2/N2/SO2). The mechanisms affecting the transistor performance and structural integrity in harsh environment were analyzed using a variety of experimental, simulation, and modeling techniques, including in situ electrical measurement (e.g., burn-in) and advanced microscopy (e.g., structural deformation). Through transistor, Transmission Line Method (TLM), and Hall-effect measurements vs temperature, it is revealed that the mobility decrease is the primary cause of reduction of on-state performance of this GaN transistor at high temperature. Material analysis of the device under test (DUT) confirmed the absence of foreign elements from the Venus atmosphere. No inter-diffusion of the elements (including the gate metal) was observed. The insights of this work are broadly applicable to the future design, fabrication, and deployment of robust III-N devices for harsh environment operation.

...
...
...

Pretplatite se na novosti o BH Akademskom Imeniku

Ova stranica koristi kolačiće da bi vam pružila najbolje iskustvo

Saznaj više