Abstract This paper discusses the problem of finding the optimal network topological configuration by changing the feeder status. The reconfiguration problem is considered as a multiobjective problem aiming to minimize power losses and total interruptions costs subject to the system constraints: the network radiality voltage limits and feeder capability limits. Due to its complexity, the metaheuristic methods can be applied to solve the problem and often the choice is genetic algorithm. NSGA II is used to solve the multiobjective optimization problem in order to get Pareto optimal set with possible solutions. The proposed method has been tested on real 35 kV distribution network. The numerical results are presented to illustrate the feasibility of the proposed genetic algorithm. Keywords radial distribution network, multiobjective optimization, reconfiguration, genetic algorithms, NSGA II
Power system is a complex, dynamic system, composed of a large number of interrelated elements. Its primary mission is to provide a safe and reliable production, transmission and distribution of electrical energy to final consumers, extending over a large geographic area. It comprises of a large number of individual elements which jointly constitute a unique and highly complex dynamic system. Some elements are merely the system's components while others affect the whole system (Machowski, 1997). Securing necessary level of safety is of great importance for economic and reliable operation of modern electric power systems.
Ibrahim Omerhodzic1, Samir Avdakovic2, Amir Nuhanovic3, Kemal Dizdarevic1 and Kresimir Rotim4 1Clinical Center University of Sarajevo, Department of Neurosurgery, Sarajevo 2EPC Elektroprivreda of Bosnia and Herzegovina, Sarajevo 3Faculty of Electrical Engineering, University of Tuzla, Tuzla 4University Hospital “Sisters of Charity”, Department of Neurosurgery, Zagreb 1,2,3Bosnia and Herzegovina 4Croatia
Ova stranica koristi kolačiće da bi vam pružila najbolje iskustvo
Saznaj više