Logo
User Name

Amina Mević

Društvene mreže:

Fatima Kaljanac, Amina Mevic, Senka Krivic

Air pollution, particularly the concentration of particulate matter ($\mathbf{P M}_{\mathbf{1 0}}$), poses significant risks to human health and the environment. In this study, we employed the FB Prophet forecasting model to predict PM10 levels in Sarajevo and applied SHAP to enhance model interpretability. Using historical meteorological data and PM10 concentration records, we evaluated the model’s performance across three prediction horizons: 30, 60, and 90 days ahead. SHAP analysis identified the key meteorological drivers influencing $\mathbf{P M}_{10}$ concentrations. Accurate long-horizon predictions can support timely planning and decision-making, while also enhancing our understanding of air pollution dynamics in Sarajevo and providing valuable guidance for environmental management and public health strategies.

Introductory programming courses are widely known for their difficulty among students. Success in courses is commonly measured in the form of final grades, which might not capture the challenges students face during their learning process. In this paper, we predict students’ success and their future compiler errors based on previously made errors. Furthermore, we examine the effect of applying two clustering techniques before making the predictions and identify key weeks and errors that have the greatest impact on predictions. Experimental results show that students’ compiler errors observed through the semester are an important predictor of students’ achievement and future struggles. Predictions are further improved using sentence encoder-generated embeddings with K-Means algorithm. Our study suggests that students’ errors, particularly the most recent ones, enable meaningful clustering that enhances performance prediction after only three weeks of the semester.

Amina Mevic, Andreas Laber, S. Szedmák, Dženana Đonko, Senka Krivic

Technologies such as virtual metrology (VM), which monitors fabrication processes and predict product properties without physical measurements have numerous positive impacts. In this paper, we propose a VM system that predicts multiple physical properties of metal layers after the physical vapor deposition. We employ the Projective Selection (ProjSe) algorithm, which is suitable for variable selection in multioutput problems, to investigate the relationship between process parameters and layer properties. The effectiveness of the feature selection process combined with different regression models is demonstrated on real-world datasets collected from semiconductor manufacturer Infineon Technologies AG.

This study scrutinizes five years of Sarajevo’s Air Quality Index (AQI) data using diverse machine learning models — Fourier autoregressive integrated moving average (Fourier ARIMA), Prophet, and Long short-term memory (LSTM)—to forecast AQI levels. Focusing on various prediction frames, we evaluate model performances and identify optimal strategies for different temporal granularities. Our research unveils subtle insights into each model’s efficacy, shedding light on their strengths and limitations in predicting AQI across varied timeframes. This research presents a robust framework for automatic optimization of AQI predictions, emphasizing the influence of temporal granularity on prediction accuracy, automatically selecting the most efficient models and parameters. These insights hold significant implications for data-driven decision-making in urban air quality control, paving the way for proactive and targeted interventions to improve air quality in Sarajevo and similar urban environments.

...
...
...

Pretplatite se na novosti o BH Akademskom Imeniku

Ova stranica koristi kolačiće da bi vam pružila najbolje iskustvo

Saznaj više