Logo
User Name

Gordana Bogdanović

Društvene mreže:

H. Ingelman-Sundberg, Lisa Blixt, D. Wullimann, Jinghua Wu, Yu Gao, K. Healy, S. Muschiol, G. Bogdanovic, M. Åberg et al.

Not available.

Maria Andersson, Jinghua Wu, D. Wullimann, Yu Gao, M. Åberg, S. Muschiol, K. Healy, S. Naud, G. Bogdanovic et al.

Background Patients with chronic lymphocytic leukemia (CLL) are vulnerable to coronavirus disease 2019 (COVID-19) and are at risk of inferior response to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccination, especially if treated with the first-generation Bruton’s tyrosine kinase inhibitor (BTKi) ibrutinib. We aimed to evaluate the impact of the third-generation BTKi, zanubrutinib, on systemic and mucosal response to SARS-CoV-2 vaccination. Methods Nine patients with CLL with ongoing zanubrutinib therapy were included and donated blood and saliva during SARS-CoV-2 vaccination, before vaccine doses 3 and 5 and 2 - 3 weeks after doses 3, 4, and 5. Ibrutinib-treated control patients (n = 7) and healthy aged-matched controls (n = 7) gave blood 2 - 3 weeks after vaccine dose 5. We quantified reactivity and neutralization capacity of SARS-CoV-2-specific IgG and IgA antibodies (Abs) in both serum and saliva, and reactivity of T cells activated with viral peptides. Results Both zanubrutinib- and ibrutinib-treated patients had significantly, up to 1,000-fold, lower total spike-specific Ab levels after dose 5 compared to healthy controls (P < 0.01). Spike-IgG levels in serum from zanubrutinib-treated patients correlated well to neutralization capacity (r = 0.68; P < 0.0001) and were thus functional. Mucosal immunity (specific IgA in serum and saliva) was practically absent in zanubrutinib-treated patients even after five vaccine doses, whereas healthy controls had significantly higher levels (tested in serum after vaccine dose 5) (P < 0.05). In contrast, T-cell reactivity against SARS-CoV-2 peptides was equally high in zanubrutinib- and ibrutinib-treated patients as in healthy control donors. Conclusions In our small cohort of zanubrutinib-treated CLL patients, we conclude that up to five doses of SARS-CoV-2 vaccination induced no detectable IgA mucosal immunity, which likely will impair the primary barrier defence against the infection. Systemic IgG responses were also impaired, whereas T-cell responses were normal. Further and larger studies are needed to evaluate the impact of these findings on disease protection.

M. Ghorbani, Khaled Al-Manei, S. Naud, K. Healy, Giorgio Gabarrini, Michał J. Sobkowiak, Puran Chen, S. Ray, Mira Akber et al.

Coevolution of microbiome and immunity at mucosal sites is essential for our health. Whether the oral microbiome, the second largest community after the gut, contributes to the immunogenicity of COVID-19 vaccines is not known. We investigated the baseline oral microbiome in individuals in the COVAXID clinical trial receiving the BNT162b2 mRNA vaccine. Participants (n=115) included healthy controls (HC; n=57) and people living with HIV (PLHIV; n=58) who met the study selection criteria. Vaccine-induced Spike antibodies in saliva and serum from 0 to 6 months were assessed and comparative analyses were performed against the individual salivary 16S ASV microbiome diversity. High- versus low vaccine responders were assessed on general, immunological, and oral microbiome features. Our analyses identified oral microbiome features enriched in high- vs. low-responders among healthy and PLHIV participants. In low-responders, an enrichment of Gram-negative, anaerobic species with proteolytic activity were found including Campylobacter, Butyrivibrio, Selenomonas, Lachnoanaerobaculum, Leptotrichia, Megasphaera, Prevotella and Stomatobaculum. In high-responders, enriched species were mainly Gram-positive and saccharolytic facultative anaerobes: Abiotrophia, Corynebacterium, Gemella, Granulicatella, Rothia, and Haemophilus. Combining identified microbial features in a classifier using the area under the receiver operating characteristic curve (ROC AUC) yielded scores of 0.879 (healthy controls) to 0.82 (PLHIV), supporting the oral microbiome contribution in the long-term vaccination outcome. The present study is the first to suggest that the oral microbiome has an impact on the durability of mucosal immunity after Covid-19 vaccination. Microbiome-targeted interventions to enhance long-term duration of mucosal vaccine immunity may be exploited.

Blixt Lisa, Yu Gao, D. Wullimann, Hanna Murén Ingelman-Sundberg, S. Muschiol, K. Healy, G. Bogdanovic, E. Pin, P. Nilsson et al.

Conflict of interest: COI declared see note COI notes: The authors declare no competing financial interests. MB is a consultant for Oxford Immunotech. AS is a consultant for Gritstone Bio, Flow Pharma, Arcturus Therapeutics, ImmunoScape, CellCarta, Avalia, Moderna, Fortress and Repertoire. LJI has filed for patent protection for various aspects of T cell epitope and vaccine design work. Preprint server: No; Author contributions and disclosures: LB, LH, AÖ, GB, MSC, HGL and MB contributed to conceptualization, funding acquisition and discussion of data. YG, KH and SM and DW performed experiments and analyzed data. LB, HMIS, CK, LH and AÖ recruited study participants, conducted management of participants during the study and analyzed data. AG and AS provided peptide pools to measure the spike-specific T cell responses. LB, DW, AÖ, LH, HGL and MB wrote the original draft of the manuscript. All authors reviewed and edited revisions of the manuscript and had final responsibility for the decision to submit for publication. Non-author contributions and disclosures: No; Agreement to Share Publication-Related Data and Data Sharing Statement: Emails to the corresponding author Clinical trial registration information (if any):

Hassan Alkharaan, Shaghayegh Bayati, C. Hellström, S. Aleman, Annika Olsson, K. Lindahl, G. Bogdanovic, K. Healy, Georgios Tsilingaridis et al.

this H, Bayati S, Hellström C et al. Persisting Salivary IgG Against SARS-CoV-2 at 9 Months After Mild COVID-19: A Complementary Approach to Population Surveys.

Yu Gao, Curtis Cai, D. Wullimann, Julia Niessl, Olga Rivera-Ballesteros, Puran Chen, J. Lange, Angelica Cuapio, O. Blennow et al.

Caroline Boulouis, Tobias Kammann, Angelica Cuapio, Tiphaine Parrot, Yu Gao, Elli Mouchtaridi, D. Wullimann, J. Lange, Puran Chen et al.

Caroline Boulouis, Tobias Kammann, Angelica Cuapio, Tiphaine Parrot, Yu Gao, Elli Mouchtaridi, D. Wullimann, J. Lange, Puran Chen et al.

Angelica Cuapio, Caroline Boulouis, I. Filipovic, D. Wullimann, Tobias Kammann, Tiphaine Parrot, Puran Chen, Mira Akber, Yu Gao et al.

...
...
...

Pretplatite se na novosti o BH Akademskom Imeniku

Ova stranica koristi kolačiće da bi vam pružila najbolje iskustvo

Saznaj više