Logo
User Name

Nudžeim Selimović

Istituto Nazionale di Fisica Nucleare, Padova

Društvene mreže:

We analyze the signatures of new physics scenarios featuring third-family quark-lepton unification at the TeV scale in lepton-quark fusion at hadron colliders. Working with complete UV dynamics based on the SU(4) gauge symmetry in the third-family fermions, we simulate the resonant production of a vector leptoquark at the next-to-leading order, including its decay and matching to the parton showers. The precise theoretical control over this production channel allows us to set robust bounds on the vector leptoquark parameter space which are complementary to the other production channels at colliders. We emphasize the importance of the resonant channel in future searches and discuss the impact of variations in the model space depending on the flavor structure of the vector leptoquark couplings.

L. Allwicher, G. Isidori, J. M. Lizana, Nudžeim Selimović, B. Stefanek

We analyze the compatibility of the hypothesis of third-family quark-lepton unification at the TeV scale with electroweak precision data, lepton flavor universality tests, and high-pT constraints. We work within the framework of the UV complete flavor non-universal 4321 gauge model, which is matched at one loop to the Standard Model Effective Field Theory. For consistency, all electroweak precision observables are also computed at one loop within the effective field theory. At tree level, the most sizeable corrections are to W → τντ and Z → ντντ due to integrating out a pseudo-Dirac singlet fermion required by the model for neutrino mass generation. At loop level, the new colored states of the model generate large flavor-universal contributions to the electroweak precision observables via leading- and next-to-leading log running effects, yielding a significant improvement in the electroweak fit (including an increase in the W-boson mass). These effects cannot be decoupled if the model addresses the charged-current B-meson anomalies. Overall, we find good compatibility between the data sets, while simultaneously satisfying all low- and high-energy constraints.

L. Buonocore, A. Greljo, Peter Krack, P. Nason, Nudžeim Selimović, F. Tramontano, G. Zanderighi

Recent progress in calculating lepton density functions inside the proton and simulating lepton showers laid the foundations for precision studies of resonant leptoquark production at hadron colliders. Direct quark-lepton fusion into a leptoquark is a novel production channel at the LHC that has the potential to probe a unique parameter space for large masses and couplings. In this work, we build the first Monte Carlo event generator for a full-fledged simulation of this process at NLO for production, followed by a subsequent decay using the POWHEG method and matching to the parton showers utilizing HERWIG. The code can handle all scalar leptoquark models with renormalisable quark-lepton interactions. We then comprehensively study the differential distributions, including higher-order effects, and assess the corresponding theoretical uncertainties. We also quantify the impact of the improved predictions on the projected (HL-)LHC sensitivities and initiate the first exploration of the potential at the FCC-hh. Our work paves the way toward performing LHC searches using this channel.

...
...
...

Pretplatite se na novosti o BH Akademskom Imeniku

Ova stranica koristi kolačiće da bi vam pružila najbolje iskustvo

Saznaj više