The continuous rise of multimedia entertainment has led to an increased demand for delivering outstanding user experience of multimedia content. However, modelling user-perceived Quality of Experience (QoE) is a challenging task, resulting in efforts for better understanding and measurement of user-perceived QoE. To evaluate user QoE, subjective quality assessment, where people watch and grade videos, and objective quality assessment in which videos are graded using one or many objective metrics are conducted. While there is a plethora of video databases available for subjective and objective video quality assessment, these videos are artificially infused with various temporal and spatial impairments. Videos being assessed are artificially distorted with startup delay, bitrate changes, and stalls due to rebuffering events. To conduct a more credible quality assessment, a reproduction of original user experiences while watching different types of streams on different types and quality of networks is needed. To aid current efforts in bridging the gap between the mapping of objective video QoE metrics to user experience, we developed DashReStreamer, an open-source framework for re-creating adaptively streamed video in real networks. The framework takes inputs in the form of video logs captured by the client in a non-regulated setting, along with an.mpd file or a YouTube URL. The ultimate result is a video sequence that encompasses all the data extracted from the video log. DashReStreamer also calculates popular video quality metrics like PSNR, SSIM, MS-SSIM and VMAF. Finally, DashReStreamer allows creating impaired video sequences from the popular streaming platform, YouTube. As a demonstration of framework usage we created a database of 332 realistic video clips, based on video logs collected from real mobile and wireless networks. Every video clip is supplemented with bandwidth trace and video logs used in its creation and also with objective metrics calculation reports. In addition to dataset, we performed subjective evaluation of video content, assessing its effect on overall user QoE. We believe that this dataset and framework will allow the research community to better understand the impacts of video QoE dynamics.
Rising shares of renewable generation raises uncertainty and thus the number of possible power flow scenarios in the power system, which in turn increases the possibility for unforeseen contingencies, such as power line or generator failures and their combinations. Therefore, operators cannot longer rely only on operational experience to deal with every contingency. Our proposed method involves identifying the most effective countermeasures to minimize the impact of contingencies on the power system. We take into account various options, such as load shedding, adjusting phase-shifting transformer angles, and injecting active power using fast elements. The proposed approach considers primary control of generators and its limitations in order to compensate for power imbalances in the system. The problem is formulated as a mixed-integer linear optimization problem, employing DC power flow equations. The applicability of the approach is evaluated on the IEEE 39-bus system, and the scalability of the approach is shown on five systems with up to 6470 buses.
Data-driven state estimation (SE) is becoming increasingly important in modern power systems, as it allows for more efficient analysis of system behaviour using real-time measurement data. This paper thoroughly evaluates a phasor measurement unit-only state estimator based on graph neural networks (GNNs) applied over factor graphs. To assess the sample efficiency of the GNN model, we perform multiple training experiments on various training set sizes. Additionally, to evaluate the scalability of the GNN model, we conduct experiments on power systems of various sizes. Our results show that the GNN-based state estimator exhibits high accuracy and efficient use of data. Additionally, it demonstrated scalability in terms of both memory usage and inference time, making it a promising solution for data-driven SE in modern power systems.
We consider the problem of maximum-likelihood estimation in linear models represented by factor graphs and solved via the Gaussian belief propagation algorithm. Motivated by massive Internet of Things (IoT) networks and edge computing, we set the above problem in a clustered scenario, where the factor graph is divided into clusters and assigned for processing in a distributed fashion across a number of edge computing nodes. For these scenarios, we show that an alternating Gaussian belief propagation (AGBP) algorithm that alternates between inter- and intracluster iterations, demonstrates superior performance in terms of convergence properties compared to the existing solutions in the literature. We present a comprehensive framework and introduce appropriate metrics to analyze the AGBP algorithm across a wide range of linear models characterized by symmetric and nonsymmetric, square, and rectangular matrices. We extend the analysis to the case of dynamic linear models by introducing the dynamic arrival of new data over time. Using a combination of analytical and extensive numerical results, we show the efficiency and scalability of the AGBP algorithm, making it a suitable solution for large-scale inference in massive IoT networks.
Nonlinear state estimation (SE), with the goal of estimating complex bus voltages based on all types of measurements available in the power system, is usually solved using the iterative Gauss-Newton (GN) method. The nonlinear SE presents some difficulties when considering inputs from both phasor measurement units and supervisory control and data acquisition system. These include numerical instabilities, convergence time depending on the starting point of the iterative method, and the quadratic computational complexity of a single iteration regarding the number of state variables. This paper introduces an original graph neural network based SE implementation over the augmented factor graph of the nonlinear power system SE, capable of incorporating measurements on both branches and buses, as well as both phasor and legacy measurements. The proposed regression model has linear computational complexity during the inference time once trained, with a possibility of distributed implementation. Since the method is noniterative and non-matrix-based, it is resilient to the problems that the GN solver is prone to. Aside from prediction accuracy on the test set, the proposed model demonstrates robustness when simulating cyber attacks and unobservable scenarios due to communication irregularities. In those cases, prediction errors are sustained locally, with no effect on the rest of the power system's results.
Fifth-Generation (5G) networks have a potential to accelerate power system transition to a flexible, softwarized, data-driven, and intelligent grid. With their evolving support for Machine Learning (ML)/Artificial Intelligence (AI) functions, 5G networks are expected to enable novel data-centric Smart Grid (SG) services. In this paper, we explore how data-driven SG services could be integrated with ML/AI-enabled 5G networks in a symbiotic relationship. We focus on the State Estimation (SE) function as a key element of the energy management system and focus on two main questions. Firstly, in a tutorial fashion, we present an overview on how distributed SE can be integrated with the elements of the 5G core network and radio access network architecture. Secondly, we present and compare two powerful distributed SE methods based on: i) graphical models and belief propagation, and ii) graph neural networks. We discuss their performance and capability to support a near real-time distributed SE via 5G network, taking into account communication delays.
—The power system state estimation (SE) algorithm estimates the complex bus voltages based on the available set of measurements. Because phasor measurement units (PMUs) are becoming more widely employed in transmission power systems, a fast SE solver capable of exploiting PMUs’ high sample rates is required. To accomplish this, we present a method for training a model based on graph neural networks (GNNs) to learn estimates from PMU voltage and current measurements, which, once it is trained, has a linear computational complexity with respect to the number of nodes in the power system. We propose an original GNN implementation over the power system’s factor graph to simplify the incorporation of various types and numbers of measurements both on power system buses and branches. Fur-thermore, we augment the factor graph to improve the robustness of GNN predictions. Training and test examples were generated by randomly sampling sets of power system measurements and annotated with the exact solutions of linear SE with PMUs. The numerical results demonstrate that the GNN model provides an accurate approximation of the SE solutions. Additionally, errors caused by PMU malfunctions or the communication failures that make the SE problem unobservable have a local effect and do not deteriorate the results in the rest of the power system.
Multimedia streaming over the Internet (live and on demand) is the cornerstone of modern Internet carrying more than 60% of all traffic. With such high demand, delivering outstanding user experience is a crucial and challenging task. To evaluate user Quality of Experience (QoE) many researchers deploy subjective quality assessments where participants watch and rate videos artificially infused with various temporal and spatial impairments. To aid current efforts in bridging the gap between the mapping of objective video QoE metrics to user experience, we developed DashReStreamer, an open-source framework for re-creating adaptively streamed video in real networks. DashReStreamer utilises a log created by a HTTP adaptive streaming (HAS) algorithm run in an uncontrolled environment (i.e., wired or wireless networks), encoding visual changes and stall events in one video file. These videos are applicable for subjective QoE evaluation mimicking realistic network conditions. To supplement DashReStreamer, we re-create 234 realistic video clips, based on video logs collected from real mobile and wireless networks. In addition our dataset contains both video logs with all decisions made by the HAS algorithm and network bandwidth profile illustrating throughput distribution. We believe this dataset and framework will permit other researchers in their pursuit for the final frontier in understanding the impact of video QoE dynamics.
Ova stranica koristi kolačiće da bi vam pružila najbolje iskustvo
Saznaj više