The continuous rise of multimedia entertainment has led to an increased demand for delivering outstanding user experience of multimedia content. However, modelling user-perceived Quality of Experience (QoE) is a challenging task, resulting in efforts for better understanding and measurement of user-perceived QoE. To evaluate user QoE, subjective quality assessment, where people watch and grade videos, and objective quality assessment in which videos are graded using one or many objective metrics are conducted. While there is a plethora of video databases available for subjective and objective video quality assessment, these videos are artificially infused with various temporal and spatial impairments. Videos being assessed are artificially distorted with startup delay, bitrate changes, and stalls due to rebuffering events. To conduct a more credible quality assessment, a reproduction of original user experiences while watching different types of streams on different types and quality of networks is needed. To aid current efforts in bridging the gap between the mapping of objective video QoE metrics to user experience, we developed DashReStreamer, an open-source framework for re-creating adaptively streamed video in real networks. The framework takes inputs in the form of video logs captured by the client in a non-regulated setting, along with an.mpd file or a YouTube URL. The ultimate result is a video sequence that encompasses all the data extracted from the video log. DashReStreamer also calculates popular video quality metrics like PSNR, SSIM, MS-SSIM and VMAF. Finally, DashReStreamer allows creating impaired video sequences from the popular streaming platform, YouTube. As a demonstration of framework usage we created a database of 332 realistic video clips, based on video logs collected from real mobile and wireless networks. Every video clip is supplemented with bandwidth trace and video logs used in its creation and also with objective metrics calculation reports. In addition to dataset, we performed subjective evaluation of video content, assessing its effect on overall user QoE. We believe that this dataset and framework will allow the research community to better understand the impacts of video QoE dynamics.
Rising shares of renewable generation raises uncertainty and thus the number of possible power flow scenarios in the power system, which in turn increases the possibility for unforeseen contingencies, such as power line or generator failures and their combinations. Therefore, operators cannot longer rely only on operational experience to deal with every contingency. Our proposed method involves identifying the most effective countermeasures to minimize the impact of contingencies on the power system. We take into account various options, such as load shedding, adjusting phase-shifting transformer angles, and injecting active power using fast elements. The proposed approach considers primary control of generators and its limitations in order to compensate for power imbalances in the system. The problem is formulated as a mixed-integer linear optimization problem, employing DC power flow equations. The applicability of the approach is evaluated on the IEEE 39-bus system, and the scalability of the approach is shown on five systems with up to 6470 buses.
Data-driven state estimation (SE) is becoming increasingly important in modern power systems, as it allows for more efficient analysis of system behaviour using real-time measurement data. This paper thoroughly evaluates a phasor measurement unit-only state estimator based on graph neural networks (GNNs) applied over factor graphs. To assess the sample efficiency of the GNN model, we perform multiple training experiments on various training set sizes. Additionally, to evaluate the scalability of the GNN model, we conduct experiments on power systems of various sizes. Our results show that the GNN-based state estimator exhibits high accuracy and efficient use of data. Additionally, it demonstrated scalability in terms of both memory usage and inference time, making it a promising solution for data-driven SE in modern power systems.
We consider the problem of maximum-likelihood estimation in linear models represented by factor graphs and solved via the Gaussian belief propagation algorithm. Motivated by massive Internet of Things (IoT) networks and edge computing, we set the above problem in a clustered scenario, where the factor graph is divided into clusters and assigned for processing in a distributed fashion across a number of edge computing nodes. For these scenarios, we show that an alternating Gaussian belief propagation (AGBP) algorithm that alternates between inter- and intracluster iterations, demonstrates superior performance in terms of convergence properties compared to the existing solutions in the literature. We present a comprehensive framework and introduce appropriate metrics to analyze the AGBP algorithm across a wide range of linear models characterized by symmetric and nonsymmetric, square, and rectangular matrices. We extend the analysis to the case of dynamic linear models by introducing the dynamic arrival of new data over time. Using a combination of analytical and extensive numerical results, we show the efficiency and scalability of the AGBP algorithm, making it a suitable solution for large-scale inference in massive IoT networks.
Nonlinear state estimation (SE), with the goal of estimating complex bus voltages based on all types of measurements available in the power system, is usually solved using the iterative Gauss-Newton (GN) method. The nonlinear SE presents some difficulties when considering inputs from both phasor measurement units and supervisory control and data acquisition system. These include numerical instabilities, convergence time depending on the starting point of the iterative method, and the quadratic computational complexity of a single iteration regarding the number of state variables. This paper introduces an original graph neural network based SE implementation over the augmented factor graph of the nonlinear power system SE, capable of incorporating measurements on both branches and buses, as well as both phasor and legacy measurements. The proposed regression model has linear computational complexity during the inference time once trained, with a possibility of distributed implementation. Since the method is noniterative and non-matrix-based, it is resilient to the problems that the GN solver is prone to. Aside from prediction accuracy on the test set, the proposed model demonstrates robustness when simulating cyber attacks and unobservable scenarios due to communication irregularities. In those cases, prediction errors are sustained locally, with no effect on the rest of the power system's results.
Fifth-Generation (5G) networks have a potential to accelerate power system transition to a flexible, softwarized, data-driven, and intelligent grid. With their evolving support for Machine Learning (ML)/Artificial Intelligence (AI) functions, 5G networks are expected to enable novel data-centric Smart Grid (SG) services. In this paper, we explore how data-driven SG services could be integrated with ML/AI-enabled 5G networks in a symbiotic relationship. We focus on the State Estimation (SE) function as a key element of the energy management system and focus on two main questions. Firstly, in a tutorial fashion, we present an overview on how distributed SE can be integrated with the elements of the 5G core network and radio access network architecture. Secondly, we present and compare two powerful distributed SE methods based on: i) graphical models and belief propagation, and ii) graph neural networks. We discuss their performance and capability to support a near real-time distributed SE via 5G network, taking into account communication delays.
—The power system state estimation (SE) algorithm estimates the complex bus voltages based on the available set of measurements. Because phasor measurement units (PMUs) are becoming more widely employed in transmission power systems, a fast SE solver capable of exploiting PMUs’ high sample rates is required. To accomplish this, we present a method for training a model based on graph neural networks (GNNs) to learn estimates from PMU voltage and current measurements, which, once it is trained, has a linear computational complexity with respect to the number of nodes in the power system. We propose an original GNN implementation over the power system’s factor graph to simplify the incorporation of various types and numbers of measurements both on power system buses and branches. Fur-thermore, we augment the factor graph to improve the robustness of GNN predictions. Training and test examples were generated by randomly sampling sets of power system measurements and annotated with the exact solutions of linear SE with PMUs. The numerical results demonstrate that the GNN model provides an accurate approximation of the SE solutions. Additionally, errors caused by PMU malfunctions or the communication failures that make the SE problem unobservable have a local effect and do not deteriorate the results in the rest of the power system.
Multimedia streaming over the Internet (live and on demand) is the cornerstone of modern Internet carrying more than 60% of all traffic. With such high demand, delivering outstanding user experience is a crucial and challenging task. To evaluate user Quality of Experience (QoE) many researchers deploy subjective quality assessments where participants watch and rate videos artificially infused with various temporal and spatial impairments. To aid current efforts in bridging the gap between the mapping of objective video QoE metrics to user experience, we developed DashReStreamer, an open-source framework for re-creating adaptively streamed video in real networks. DashReStreamer utilises a log created by a HTTP adaptive streaming (HAS) algorithm run in an uncontrolled environment (i.e., wired or wireless networks), encoding visual changes and stall events in one video file. These videos are applicable for subjective QoE evaluation mimicking realistic network conditions. To supplement DashReStreamer, we re-create 234 realistic video clips, based on video logs collected from real mobile and wireless networks. In addition our dataset contains both video logs with all decisions made by the HAS algorithm and network bandwidth profile illustrating throughput distribution. We believe this dataset and framework will permit other researchers in their pursuit for the final frontier in understanding the impact of video QoE dynamics.
The goal of the state estimation (SE) algorithm is to estimate complex bus voltages as state variables based on the available set of measurements in the power system. Because phasor measurement units (PMUs) are increasingly being used in transmission power systems, there is a need for a fast SE solver that can take advantage of high sampling rates of PMUs. This paper proposes training a graph neural network (GNN) to learn the estimates given the PMU voltage and current measurements as inputs, with the intent of obtaining fast and accurate predictions during the evaluation phase. GNN is trained using synthetic datasets, created by randomly sampling sets of measurements in the power system and labelling them with a solution obtained using a linear SE with PMUs solver. The presented results display the accuracy of GNN predictions in various test scenarios and tackle the sensitivity of the predictions to the missing input data.
Estimating the system state is a non-trivial task given a large set of measurements, fuelling the ongoing research attempts to find efficient, scalable and fast state estimation (SE) algorithms. The centralised SE becomes impractical for large-scale systems, particularly if the measurements are spatially distributed across wide geographical areas. Dividing the large-scale systems into clusters (i.e., subsystems) and distributing the computation across clusters, solves the constraints of a centralised based approach. In such scenarios, using distributed SE methods brings many advantages over the centralised approaches. In this paper, we propose a novel distributed method to solve the linear SE model by combining local solutions obtained by applying weighted least-squares (WLS) of the given subsystems with the Gaussian belief propagation (GBP) algorithm. The proposed method is based on the factor graph operating without a central coordinator, where subsystems exchange only “beliefs”, thus preserving the privacy of the measurement data and state variables. Further, we propose an approach to speed-up evaluation of the local solutions upon arrival of new information to the subsystem. Finally, the proposed algorithm reaches the accuracy of the centralised WLS solution in a few iterations and outperforms the vanilla GBP algorithm with respect to its convergence properties.
The state estimation algorithm estimates the values of the state variables based on the measurement model described as the system of equations. Prior to applying the state estimation algorithm, the existence and uniqueness of the solution of the underlying system of equations is determined through the observability analysis. If a unique solution does not exist, the observability analysis defines observable islands and further defines an additional set of equations (measurements) needed to determine a unique solution. For the first time, we utilise factor graphs and Gaussian belief propagation algorithm to define a novel observability analysis approach. The observable islands and placement of measurements to restore observability are identified by following the evolution of variances across the iterations of the Gaussian belief propagation algorithm over the factor graph. Due to sparsity of the underlying power network, the resulting method has the linear computational complexity (assuming a constant number of iterations) making it particularly suitable for solving large-scale systems. The method can be flexibly matched to distributed computational resources, allowing for determination of observable islands and observability restoration in a distributed fashion. Finally, we discuss performances of the proposed observability analysis using power systems whose size ranges between 1354 and 70 000 buses.
We propose a linear state estimation (SE) model with complex coefficients and variables suitable for processing large-scale data in electric power systems observable by phasor measurement units. The presented model is based on factor graphs and solved using the belief propagation (BP) algorithm. The proposed algorithm is placed in the non-overlapping multi-area SE scenario without a central coordinator. The communication between areas is asynchronous, where neighboring areas exchange only “beliefs” about specific state variables. Presented architecture directly exploits system sparsity, can be flexibly paralellized and results in substantially lower computational complexity compared to traditional SE solutions. Finally, we discuss performances of the BP-based SE algorithm using power systems with 118, 1354 and 9241 buses.
Lighting systems based on light-emitting diodes (LEDs) possess many benefits over their incandescent counterparts including longer lifespans, lower energy costs, better quality of light and no toxic elements, all without sacrificing consumer satisfaction. Their lifespan is not affected by switching frequency allowing for better illumination control and system efficiency. In this paper, we present a fully distributed energy-saving illumination dimming control strategy for the system of a lighting network which consists of a group of LEDs and user-associated devices. In order to solve the optimization problem, we are using a distributed approach that utilizes factor graphs and the belief propagation algorithm. Using probabilistic graphical models to represent and solve the system model provides for a natural description of the problem structure, where user devices and LED controllers exchange data via line-of-sight communication.
Nema pronađenih rezultata, molimo da izmjenite uslove pretrage i pokušate ponovo!
Ova stranica koristi kolačiće da bi vam pružila najbolje iskustvo
Saznaj više